Journal of Statistical Software

MMMMMM YYYY, Volume VV, Issue II. doi: 10.18637/jss.v000.i00

Evaluating Forecasts with scoringutils in R

Nikos I. Bosse
London School of Hygiene & Tropical Medicine (LSHTM)

Hugo Gruson Anne Cori
LSHTM Imperial College London
Edwin van Leeuwen Sebastian Funk Sam Abbott
UK Health Security Agency, LSHTM LSHTM LSHTM
Abstract

Evaluating forecasts is essential in order to understand and improve forecasting and
make forecasts useful to decision-makers. Much theoretical work has been done on the
development of proper scoring rules and other scoring metrics that can help evaluate fore-
casts. In practice, however, conducting a forecast evaluation and comparison of different
forecasters remains challenging. In this paper we introduce scoringutils, an R package that
aims to greatly facilitate this process. It is especially geared towards comparing multiple
forecasters, regardless of how forecasts were created, and visualising results. The package
is able to handle missing forecasts and is the first R package to offer extensive support for
forecasts represented through predictive quantiles, a format used by several collaborative
ensemble forecasting efforts. The paper gives a short introduction to forecast evaluation,
discusses the metrics implemented in scoringutils and gives guidance on when they are
appropriate to use, and illustrates the application of the package using example data of
forecasts for COVID-19 cases and deaths submitted to the European Forecast Hub be-
tween May and September 2021.

Keywords: forecasting, forecast evaluation, proper scoring rules, scoring, R.

1. Introduction

Good forecasts are of great interest to decision makers in various fields like finance (Timmer-
mann 2018; Elliott and Timmermann 2016), weather predictions (Gneiting and Raftery 2005;

https://doi.org/10.18637/jss.v000.i00

2 Evaluating Forecasts with scoringutils in R

Kukkonen et al. 2012) or infectious disease modelling (Reich et al. 2019; Funk et al. 2020;
Cramer et al. 2021; Bracher et al. 2021b; European Covid-19 Forecast Hub 2021). Throughout
the COVID-19 pandemic, forecasting has garnered widespread interest from policy makers
and the general public, with several collaborative forecasting efforts (“Forecast Hubs”) being
established (Reich et al. 2019; Cramer et al. 2020; European Covid-19 Forecast Hub 2021;
7). Forecast evaluation is an integral part of assessing and improving the usefulness of fore-
casts. For decades, researchers, especially in the field of weather forecasting, have therefore
developed and refined an arsenal of techniques to evaluate predictions (see for example Good
(1952), Epstein (1969); Murphy (1971); Matheson and Winkler (1976), Gneiting, Balabdaoui,
and Raftery (2007), Funk, Camacho, Kucharski, Lowe, Eggo, and Edmunds (2019), Gneiting
and Raftery (2007), Bracher, Ray, Gneiting, and Reich (2021a)).

Various R (R Core Team 2021) packages cover a wide variety of scoring rules, plots and other
metrics that are useful in assessing the quality of a forecast. Existing packages are well suited
to evaluate the quality of a single forecast or to compare the performance of several models
on a single target variable (we’ll be using the terms “model” and “forecaster” interchange-
ably). One particular challenge, however, is dealing with multidemsionality: evaluating and
comparing forecasts from several models across multiple dimensions such as time, space, and
different types of targets.

Packages such as scoringRules (Jordan, Kriiger, and Lerch 2019), Metrics (Hamner and Frasco
2018), MLmetrics (Yan 2016), verification (Laboratory 2015), or SpecsVerification (Siegert
2020), which provide an extensive collection of scoring rules and metrics, usually operate
on vectors and matrices. Applying them to multiple forecasts across several dimensions can
therefore be cumbersome. Some packages like scoring (Merkle and Steyvers 2013) operate
on a data.frame and use a formula interface, making this task easier. However, scoring only
exports a few scoring rules and does not provide a general interface or framework that would
allow users to conduct forecast evaluations in which they can apply arbitrary scoring rules to
data.

Some packages such as tscount (Liboschik, Fokianos, and Fried 2017), topmodels (Zeileis and
Lang 2022), GLMMadaptive (Rizopoulos 2023) or ¢vGEE (Rizopoulos 2019) provide useful
scoring metrics and plots, but those are only accessible if the forecasts were generated in a
particular way. tscount, for example, requires an object of class tsglm, topmodels requires an
object of class 1m, glm, crch or disttree, GLMMadaptive requires an object of class MixMod
and cvGEE requires an object of class geeglm. These tools are by their nature not generally
applicable to all use cases practitioners might encounter.

yardstick (Kuhn, Vaughan, and Hvitfeldt 2023a), which builds on the tidymodels (Kuhn and
Wickham 2020) framework, is the most general other forecast evaluation package. It allows
users to apply arbitrary scoring rules to a data.frame of forecasts, regardless of how they were
created. The frameworks is flexible and easily extendable, and also addresses the issue of
scoring forecasts across various dimensions. However, yardstick is primarily focused on point
forecasts and classification tasks. It currently lacks general support for probabilistic forecasts
(forecasts in the form of a full predictive distribution, represented e.g. by a set of quantiles
or samples from the forecast distribution). Probabilistic forecasts are desirable, as they allow
decision makers to take into account the uncertainty of a forecast (Gneiting et al. 2007), and
are widely used, e.g. in Meteorology or Epidemiology. fabletools (O’Hara-Wild, Hyndman,
and Wang 2023) offers some functionality to evaluate probabilistic forecasts, but is not fully
general as scoring is tied to specific object classes and users cannot easily supply their own

Journal of Statistical Software

scoring rules.

scoringutils aims to fill the gap in the ecosystem by providing a general-purpose tools as
well as a framework for the evaluation of (probabilistic) forecasts across multiple dimensions
using wide variety of user-provided scoring rules. Notably, scoringutils is the first package
to offer extensive support for probabilistic forecasts in the form of predictive quantiles, a
format that is currently used by several infectious disease Forecast Hubs (Reich et al. 2019;
Cramer et al. 2020; European Covid-19 Forecast Hub 2021; 7). The package provides wide
functionality to check the data and diagnose issues, to visualise forecasts and missing data,
to transform data before scoring (Bosse, Abbott, Cori, van Leeuwen, Bracher, and Funk
2023), to apply scoring rules to data, to handle missing forecasts, to aggregate scores and to
visualise the results of the evaluation. scoringutils makes extensive use of data.table (Dowle
and Srinivasan 2023) to ensure fast and memory-efficient computations. The package aims to
be flexible and extendable, providing multiple generics and methods that users can expand
on.

Many practitioners who develop models are not experts in forecast evaluation and do not have
a deep understanding of the various scoring rules or know which one to apply. scoringutils aims
to make the task of evaluating forecasts more accessible to inexperienced users by providing
sensible defaults in addition to extensive function documentation. Explanations of the default
metrics, as well as vignettes and case studies help users to understand how to use the package
and interpret results.

Currently, there exists a large number of packages with partly overlapping functionality.
In addition to the already mentioned packages, surveillance (Meyer, Held, and Hohle 2017),
predtools (Sadatsafavi, Safari, and Lee 2023), probably (Kuhn, Vaughan, and Ruiz 2023b) are
notable for the scoring rules, plots, and tools they provide to verify and handle forecasts. For
inexperienced practitioners, the large number of packages and functions can be overwhelming.
scoringutils aims to bridge the gap between existing packages and to make it easier to work
with different packages in the ecosystem a coherent way. It does this firstly by providing
extensive vignettes and case studies that illustrate how functions from different packages can
be used together. Secondly, it provides helper functions to convert to and from the formats
used in different packages, where those are not immediately compatible, making it easy to
use different packages in a single workflow. In the future, we also aim to provide interfaces to
common modelling packages such as odin in order to allow for a closer integration of modelling
and evaluation.

scoringutils currently does not handle all possible kinds of prediction formats supported by
other packages. For example, it does not support multiclass predictions, or scoring forecasts
that are specified as a closed-form distribution. However, we plan to add support for these
to the package in the near future, as well as support for scoring multivariate forecasts that
specify a joint distribution across targets.

The remainder of this section will provide an overview of the fundamental ideas behind
forecast evaluation. Section ?? will give a detailed theoretical explanation of the evaluation
metrics in scoringutils and when to use them. Section 7?7 will demonstrate how to conduct an
evaluation in scoringutils using forecasts of COVID-19 submitted to the European Forecast
Hub (European Covid-19 Forecast Hub 2021) as a case study. In the following we will use
the words “model” and “forecaster” interchangeably, regardless of how forecasts were actually
generated.

4 Evaluating Forecasts with scoringutils in R

2. Package overview

The following section gives an overview of the main functionality of scoringutils. Everything
will be illustrated using the example data. An overview of all existing functions can be seen
on https://epiforecasts.io/scoringutils.

2.1. Basic workflow

scoringutils supports two basic workflows (see Figure ??). One option is for users to score
their forecasts directly using the scoring rules exported by scoringutils in a format based on
vectors and matrices. Those functions that can be called directly on a set of vectors and
matrices and return a single vector of scores will consistently be called “scoring rules” in
the following. Most users, however, will interact with scoringutils through a more convenient
framework based on a data.frame-like structure (internally, data.table (Dowle and Srinivasan
2023) is used).

A Input ______, scoringrule
(vector, matrix)

Input
(data.frame)

!

Create and validate
forecast object

diagnose <—J '
transform forecasts, compute relative

add additional info scores

N L visualise J /

Figure 1: Illustration of the workflow for working with scoringutils.

———————— score ———> summarise scores

2.2. Forecast types

Forecasts differ in the exact prediction task and in how the forecaster chooses to represent their
prediction. To distinguish different kinds of forecasts, scoringutils uses the term “forecast
type” (which is more a convenient classification than a formal definition). At the moment,
scoringutils distinguishes four different forecast types: “binary”, “point”, “quantile” and
“sample” forecasts (support for more forecast types is planned for the future).

“Binary” denotes a probability forecast for a binary (yes/no) outcome variable. This is
sometimes also called “soft binary classification”. “Point” denotes a forecast for a continuous
or discrete outcome variable that is represented by a single number. “Quantile” or “quantile-
based” is used to denote a probabilistic forecast for a continuous or discrete outcome variable,

https://epiforecasts.io/scoringutils

with the forecast distribution represented by a set of predictive quantiles. While a single
quantile would already satisfy the requirements for a quantile-based forecast, most scoring
rules expect a set of quantiles which are symmetric around the median (thus forming the
lower and upper bounds of central “prediction intervals”) and will return NA if this is not the
case. “Sample” or “sample-based” is used to denote a probabilistic forecast for a continuous or
discrete outcome variable, with the forecast represented by a finite set of samples drawn from
the predictive distribution. A single sample technically suffices, but would to very imprecise

results.

Forecast types (in the data.frame framework) are determined based on the names and the
type of the columns present in the input. Table 2 shows the expected input format for each
forecast type. Forecast types that are planned, but not currently supported, are greyed out.
Input formats for the scoring rules that can be called directly follow the same convention,

Journal of Statistical Software

with inputs expected to be vectors or matrices.

Forecast type

Input for score(): a data.frame with

column type
Soft classification observed factor with 2 levels
(prediction is probability) | predicted numeric [0,1]
Binary
Classification
numeric
Point forecasts Discrete, Continuous obse r"ved .
predicted numeric
observed numeric
Sample format predicted numeric
sample_id numeric
observed numeric
_— Discrete Quantile format predicted numeric
Probabilistic forecast Continuous quantile_level | numeric[0,1]

2.3. Classes

scoringutils uses separate classes that correspond to the different forecast types. Those are
currently forecast_binary, forecast_point, forecast_quantile, and forecast_sample.

Figure 2: Table with different input formats.

6 Evaluating Forecasts with scoringutils in R

These classes are used to allow for dedicated input checks and sensible defaults for the scoring
rules to be applied to the forecasts.

They come with a constructor, new_forecast (), a generic validator, validate_forecast ()
(which dispatches to a specialised validator method depending on the class of the input), and
a convenient wrapper function as_forecast(). as_forecast () determines the forecast type
of the input, constructs the class and validates the input. The process is illustrated in Figure
3. All classes also have a print() method designed to provide helpful information to the
user.

input
l inspect further
as_forecast() output
L J score()
¢ determines forecast » construcsts forecast object « validates forecast object
type based on input J, l

new_forecast(data, type) validate_forecast()
constructs an object of class
c(forecast_[type], data.table, data.frame) J,

with additional attributes lidate f €. Tt
$forecast_type validate_forceast.forecast_[type]

$forecast_unit « checks inputs and throws
makes sure that a model column is present warnings, errors, messages

Figure 3: Illustration of the process of creating a ‘forecast‘ object.

2.4. Example data

The example data included in the package and used in this paper consists of one to three week
ahead forecasts made between May and September 2021 for COVID-19 cases and deaths from
four different forecasting models. It represents a small subset of short-term predictions for
COVID-19 cases and deaths submitted to the European Forecast Hub (European Covid-19
Forecast Hub 2021). One to four week ahead predictions of different COVID-19 related targets
were submitted to the Forecast Hub each week in a quantile-based format. The full official hub
evaluations, which also use scoringutils, can be seen at https://covidl9forecasthub.eu/.
The example data was converted to all the different forecast types used in scoringutils, in order
to illustrate the workflows and provide users with a reference for the correct input formats.
The example data also contains observations without corresponding forecasts, both for the
purposes of plotting the data and to make the example data more realistic. The stored data
sets are called example_quantile, example_continuous, example_integer, example_point
and example_binary.

Here is the output of validating the example data:

R> library(scoringutils)
R> print(example_quantile, 2)

location target_end_date target_type observed location_name
1: DE 2021-01-02 Cases 127300 Germany
: DE 2021-01-02 Deaths 4534 Germany

https://covid19forecasthub.eu/

Journal of Statistical Software 7

20544 : IT 2021-07-24 Deaths 78 Italy
20545: IT 2021-07-24 Deaths 78 Italy
forecast_date quantile predicted model horizon
1: <NA> NA NA <NA> NA
2: <NA> NA NA <NA> NA
20544 : 2021-07-12 0.975 611 epiforecasts—EpiNow2 2
20545: 2021-07-12 0.990 719 epiforecasts-EpiNow2 2

R> validated <- validate(example_quantile)
R> class(validated)

[1] "scoringutils_quantile" "data.table"
[3] "data.frame"

2.5. Diagnostic functions that provide additional information about the data

In addition to printing the validated objects, users can call a variety of different functions to
obtain more information about the data and to visualise it. Functions that provide this kind
of additional information usually are named starting with get_.

get_forecast_type() infers the forecast type from a data.frame and returns a single string
(one of “binary”, “point”, “sample” or “quantile”). get_forecast_unit() returns a vector
with the names of the columns that uniquely define a single forecast (see Section 3.4 below

for more information).

get_forecast_counts() returns forecast counts, which is helpful to obtain an overview of
missing forecasts. This can impact the evaluation, if missingness correlates with performance.
Users can specify the level of summary through the by argument. For example, to see how
many forecasts there are per model and target_type, we can run

R> forecast_counts <- available_forecasts(
+ example_quantile, by = c("model", "target_type", "forecast_date")

+)

This returns an object of class forecast_counts. We can visualise the results by calling
plot () on the object (Figure 4).

R> library(ggplot2)

R> plot(forecast_counts, xvar = "forecast_date") +
+ facet_wrap(~ target_type) +

+ labs (y = "Model", x = "Forecast date")

2.6. Visualising the data

Work in progress

8 Evaluating Forecasts with scoringutils in R

Cases Deaths

UMass-MechBayes- 0 0 0 0 0 O 0 0 0 0 O IIIIIIIIIII
EuroCOVIDhub—ensemble IIIIIIIIIII IIIIIIIIIII
EuroCOVIDhub-baseline I IIIIIIIII IIIIIIIIIII

epiforecasts—EpiNow2 IIIIIIIIIII IIIIIIIIIII
™ A~ 8 d o S RN SR

Model

o N~ < n ™ ~ S o N
TTTY?TeT AT T TY?T2TATTT
N 1 W Lwwmw O© © © O K~ N~ N 1 1w wmw O © © O I~ I~
7777972792979 TCT 777797292979 TCT
sl s s s s s s s T Hd A H A A
AN N NN NN AN NN NN AN NN N N NN AN AN AN NN AN NN N
o O O O O O O O O O O o O O O O O O O O O O
N N N &N N NN N N NN N N N &N N N N N N NN

Forecast date

Count o 3 —

6 9 12

Figure 4: Forecast counts for the example data.

R> example_quantile >
make_na(what = "truth",
target_end_date > "2021-07-15",
target_end_date <= "2021-05-22") 7>}
make_na(what = "forecast',

forecast_date != "2021-06-28") }>V

plot_predictions(x = "target_end_date", by = c("target_type", "location")) +

aes(colour = model, fill = model) +
facet_wrap(target_type ~ location, ncol = 4, scales = "free_y") +

+
+
+
+
+ model != "EuroCOVIDhub-ensemble',
+
+
+
+
+ labs(x = "Target end date")

3. Scoring forecasts

scoringutils offers two ways of scoring forecasts: Users can either call different scoring rules
directly on vectors and matrices or use the function score() on a data.frame (or similar) to
apply multiple scoring rules at once.

3.1. score()

The score() is the workhorse of the package. It takes as input either an object of class
forecast_* or a data.frame (or similar) with forecasts, as well as a list of functions (the
scoring rules). The function then applies those scoring rules to the input. Additional argu-
ments can be passed down to the scoring rules via score() is a generic function that
dispatches to different methods depending on the class of the input.

score.default () is the default method that is used if as_forecast () has not yet been called
on the input. score.default() calls as_forecast() and then calls score() again in order

Journal of Statistical Software

to dispatch to the appropriate method. The method then validates the input again, applies
the scoring rules, and returns a data.table with the scores. The process is illustrated in
Figure 5.

input
l score.forecast_binary()
score.forecast_point()
score() ——— ——— output
score.forecast_sample())
l . + An object of class
score.forecast_quanttle() c(forecast_[type], data.table, data.frame)
score.default() « validates input « with attributes
® calls as_forecast() » applies scoring rules $forecast_type
® calls score() again « adds additional attribute $forecast_unit
$metric_names Smetric_names

Figure 5: Flowchart for calling ‘score()*

3.2. Scoring rules

Scoring rules are the functions the various scores and metrics. They are consistently named
name of the metric + _ + forecast type. The return value is a vector with scores (only
in the case of wis() is there an optional argument that causes the function to return a list
of vectors). The first argument of a scoring rule is always observed, and the second one
is predicted. Scoring rules for quantile-based arguments require an additional vector that
denotes the quantile levels of the predictive quantiles.

Scoring rules differ in the relationship between input and output. Some scoring rules have
a one-to-one relationship between prediction and score, returning one value per value in
predicted. This is the case for all scoring rules for binary and point forecasts. Other scoring
rules have a many-to-one relationship, returning one value per multiple values in predicted.
This is the case for all scoring rules for sample- and quantile-based forecasts. For sample-
and quantile-based forecasts, predicted is therefore a matrix, with values in each row jointly
forming a single forecast.

Input formats and return values are shown in more detail in Figure 77.

3.3. Passing scoring rules to score()

The second argument to score() is a named list of scoring rules. Names of the list item
will be used as names of the columns in the output corresponding to the respective scoring
rule. The default list for every forecast type can be accessed by calling metrics_binary(),
metrics_point (), metrics_sample() and metrics_quantile().

Scoring rules need to be compatible with the type of the forecast that is scored and need
to have compatible input formats and return values. Within score(), arguments are passed
by position, meaning that users are not tied to the scoringutils naming convention, and can
supply functions that take equivalent, but differently called arguments. The default metrics
for point forecasts, for example, uses functions from the Metrics package, which use the names
actual and predicted instead of observed and predicted.

10 Evaluating Forecasts with scoringutils in R

Scoring rules for binary and point forecasts
n = number of forecasts / observations

observed predicted return

Input:
* observed:
® ° — ® vector of length n
* predicted:
1x1 1x1 1x1 vector of length n
® e 4 output:
: : — : = vector of length n
[] [] []
nxi nxi nx1
Scoring rules for sample-based forecasts
n = number of forecasts / observations, N = number of samples per forecast
observed predicted return
Input:
* observed:
¢ | > ¢ vector of length n
* predicted:
1x1 N x1 1x1 matrix of dimn x N
(vector of length N if
® o ® observed is scalar)
L 4 [) L
@ [@
L] L (] output:
nx1 nxN nx 1 « vector of length n

Scoring rules for quantile-based forecasts
n = number of forecasts / observations, N = number of quantiles per forecast

observed predicted quantile_level return Input:
* observed:
[] ' 4 ° vector of length n
* predicted:

matrix of dimn x N
11 Nx1 Nx1 11 (vector of length N)

* quantile_level:

® [®
® S 3 °® vector of length N
[4 [®
[] L] ® output:
nxi nxN nxN nxi « vector of length n

Figure 6: Overview of the inputs and outputs of the scoring rules (scoring functions that can
be called directly on a set of vectors / matrices)

R> score(example_point) [>
+ print(2)

location target_end_date target_type observed location_name
1: DE 2021-05-08 Cases 106987 Germany
2: DE 2021-05-08 Cases 106987 Germany

886: IT 2021-07-24 Deaths 78 Italy

Journal of Statistical Software

887: IT 2021-07-24 Deaths 78 Italy
forecast_date predicted model horizon ae_point
1: 2021-05-03 119258 EuroCOVIDhub-ensemble 1 12271
2: 2021-05-03 132607 EuroCOVIDhub-baseline 1 25620
886: 2021-07-05 104 epiforecasts-EpiNow2 3 26
887: 2021-07-12 186 epiforecasts-EpiNow2 2 108
se_point ape

1: 150577441 0.1146962
2: 656384400 0.2394683
886: 676 0.3333333
887: 11664 1.3846154

3.4. The unit of a single forecast

In order to score forecasts, scoringutils needs to know which of the rows of the data belong
together and jointly form a single forecasts. This is easy e.g. for point forecast, where there is
one row per forecast. Probabilistic forecasts, however, are usually composed of several values
and for quantile or sample-based forecasts, there are therefore multiple rows that belong to a
single forecast.

The unit of a single forecast (or “forecast unit”) is defined by the other columns of the data
(except for a few protected columns). A single forecast should be uniquely defined by the
combination of values in those columns. For example, consider forecasts made by different
models in various locations at different time points and for different targets. A single forecast
could then be uniquely described by the values in the columns “model”, “location”, “date”,
and “target”, and the forecast unit would be forecast_unit = c("model", "location",
"date", "taret"). As the forecast unit is internally determined based on the names of the
existing columns, it is mandatory that no column is present that is unrelated to the forecast
unit. As a very simplistic example, consider an additional row, “even”, that is one if the row
number is even and zero otherwise. The existence of this column would change results, as
score() assumes it was relevant to grouping the forecasts.

In order to avoid issues, we recommend using the function set_forecast_unit () to determine
the forecast unit manually. The function simply drops unneeded columns, while making sure
that all necessary, ‘protected columns’ like predicted or observed are retained. You can get
a list of all protected columns by calling get_protected_columns(). You can get the current
forecast unit by calling get_forecast_unit() on the data or by simply printing the object
if it is of class forecast_x*.

The function get_duplicate_forecasts() may be helpful in case validate_forecast()
returns an error message about duplicate forecasts. This can occur if there is more than one
predicted value for a single forecast unit. In the case of quantile- and sample-based forecasts,
rows will only be considered duplicates if they have the same quantile level or sample id. Du-
plicate forecasts can be a sign of a wrongly defined forecast unit. For example, if we dropped
the column target_type in the example data, we would obtain an error about duplicate
forecasts. Even though the predicted values differ, there are now two different forecasts for

11

12 Evaluating Forecasts with scoringutils in R

the exact same forecast unit, as far as scoringutils can tell. get_duplicate_forecasts()
finds duplicates and returns them for the user to inspect.

R> rbind(example_quantile, example_quantile[1001:1002]) [>
+ get_duplicate_forecasts()

location target_end_date target_type observed location_name

1: DE 2021-05-22 Deaths 1285 Germany
2: DE 2021-05-22 Deaths 1285 Germany
3: DE 2021-05-22 Deaths 1285 Germany
4: DE 2021-05-22 Deaths 1285 Germany
forecast_date quantile predicted model horizon
1: 2021-05-17 0.975 1642 epiforecasts-EpiNow2 1
2: 2021-05-17 0.990 1951 epiforecasts-EpiNow2 1
3: 2021-05-17 0.975 1642 epiforecasts-EpiNow2 1
4: 2021-05-17 0.990 1951 epiforecasts-EpiNow2 1

3.5. Transforming forecasts

As suggested in (Bosse et al. 2023), users may want to transform forecasts before scoring
them. In an epidemiological context for example, the continuous ranked probability score
(CRPS) and the weighted interval score (WIS) are two commonly used scoring rules. Both
measure the absolute distance between the forecast and the observation. This may not be
desirable in the context of epidemiological forecasts, where infectious disease processes are
usually modelled to occur on a multiplicative scale. Taking the logarithm of the forecasts and
observations before scoring them makes it possible to evaluate forecasters based on how well
they predicted the exponential growth rate.

The function transform_forecasts() allows users to apply arbitrary transformations to
forecasts and observations. Users can specify a function via the argument fun (as well as sup-
ply additional function parameters). The default function is log_shift (), which is simply
a wrapper around log() with an additional offset to deal with zeroes in the data, i.e. com-
puting log(x + offset). Users can specify to either append the transformed forecasts to
the existing data by setting append = TRUE (the default behaviour, resulting in an additional
column scale) or to replace the existing forecasts in place.

Before calling the logarithm, we need to make sure that there are no negative values in the
data. When evaluating forecasts of epidemiological count data, one should perhaps simply
remove negative observations altogether, but for illustrative purposes we will replace them
with zeroes first before appending transformed counts.

R> example_quantile [>

+ transform_forecasts(fun
+ transform_forecasts (fun
+ print(2)

\ (x) {pmax(x, 0)}, append = FALSE) |[>
log_shift, offset = 1) [>

location target_end_date target_type observed
1: DE 2021-01-02 Cases 1.273000e+05

Journal of Statistical Software

2: DE 2021-01-02 Deaths 4.534000e+03
41089: IT 2021-07-24 Deaths 4.369448e+00
41090: IT 2021-07-24 Deaths 4.369448e+00

location_name forecast_date quantile predicted

1: Germany <NA> NA NA

2: Germany <NA> NA NA
41089: Italy 2021-07-12 0.975 6.416732
41090: Italy 2021-07-12 0.990 6.579251

model horizon scale

1: <NA> NA natural

2: <NA> NA natural
41089: epiforecasts-EpiNow2 2 log
41090: epiforecasts-EpiNow2 2 log

3.6. Summarising scores

Usually, users will not be interested in the scores for each individual forecast, but rather in a
summarised score. The function summarise_scores() allows users to aggregate scores across
dimensions using an arbitrary function.

There are two different, but essentially equivalent ways of specifying the summary level. Users
can either specify the columns that should be retained (using the argument by), or they can
specify the columns that should be aggregated over (using the argument across).

R> example_quantile[horizon == 2] |[>
+ score(metrics = list("wis" = wis)) [>
+ summarise_scores(by = c("model", "target_type"))

Summarised scores can then be visualised using the function XXXscores_table(). In order
to display scores it is often useful to round the output, for example to two significant digits,
which can be achieved with another call to summarise_scores(). The output of the following
is shown in Figure 7:

R> example_quantile[horizon == 2] |[>

+ score() [>

summarise_scores (by = c("model", "target_type")) [>
summarise_scores(fun = signif, digits = 2) [>
plot_score_table(y = "model", by = "target_type") +
facet_wrap(~ target_type)

+ + + +

While summarise_scores() accepts arbitrary summary functions, care has to be taken when
using something else than mean (). Many scoring rules for probabilistic forecasts are so-called
‘strictly proper scoring rules’ (Gneiting and Raftery 2007). Strictly proper scoring rules
are constructed such that they cannot always incentivise the forecaster to report her honest

13

14 Evaluating Forecasts with scoringutils in R

Cases Deaths
UMass-MechBayes 52 9.5 16 26 0.0027 039 0.89 -0.045 79
EuroCOVIDhub-ensemble - 17000 9700 3900 3700 -0.068 0.41 0.77 . 23000 41 7.1 35 30 0.091 0.89 il 0.2 51
EuroCOVIDhub-baseline - 29000 14000 11000 4300 0.075 0.34 0.84 . 40000 160 63 25 96 032 0.75 1 0.14 230
epiforecasts-EpiNow2 - 21000 12000 2600 6100 -0.087 0.5 0.77 | =0.08 28000 69 22 16 32 0.041 0.37 09 -0.075 110

bias

Qa
H

bias

o
B

overprediction
underprediction
dispersion
coverage_50
coverage_90
ae_median
overprediction
underprediction
dispersion
coverage_50
coverage_90
ae_median

coverage_deviation
coverage_deviation

Figure 7: Coloured table to visualise the computed scores. Red colours indicate that a value
is higher than ideal, blue indicates it is lower than ideal and the opacity indicates the strength
of the deviation from the ideal.

belief about the future and cannot be cheated. Let’s assume that a forecaster’s true belief
about the future corresponds to a predictive distribution F'. Then, if F' really was the true
data-generating process, a scoring rule would be proper if it ensures that no other forecast
distribution G would yield a better expected score. If the scoring rule ensures that under F
no other possible predictive distribution can achieve the same expected score as F', then it is
called strictly proper. From the forecaster’s perspective, any devation from her true belief F’
leads to a worsening of expected scores. When using summary functions other then the mean,
however, scores may lose their propriety (the property of incentivising honest reporting) and
become cheatable. For example, the median of several individual scores (individually based
on a strictly roper scoring rule) is usually not proper. A forecaster judged by the median of
several scores may be incentivised to misrepresent their true belief in a way that is not true
for the mean score.

The user must exercise additional caution and should usually avoid aggregating scores across
categories which differ much in the magnitude of the quantity to forecast, as forecast errors
usually increase with the order of magnitude of the forecast target. In the given example,
looking at one score per model (i.e., specifying summarise_by = c("model")) is problematic,
as overall aggregate scores would be dominated by case forecasts, while performance on deaths
would have little influence. Similarly, aggregating over different forecast horizons is often ill-
advised as the mean will be dominated by further ahead forecast horizons. In the previous
function calls, we therefore decided to only analyse forecasts with a forecast horizon of two
weeks.

3.7. Additional visualisations of scores

Heatmaps

To detect systematic patterns it may be useful to visualise a single metric across several
dimensions. The function plot_heatmap() can be used to create a heatmap that achieves
this. The following produces a heatmap of bias values across different locations and forecast
targets (output shown in Figure 8).

R> score(example_continuous) [>

Journal of Statistical Software

+ summarise_scores(by = c("model"”, "location", "target_type")) [>

+ plot_heatmap(x = "location", metric = "bias") +
+ facet_wrap(~ target_type)
Cases Deaths
UMass—-MechBayes - 0.05 0.63 -0.21
__ EuroCOVIDhub—ensemble 0.18 0.01 0.1 -0.05 0.05 0.11 0.15
3
g
EuroCOVIDhub-baseline 0.51 -0.03 0.28 0.4 0.34 0.08 0.45
epiforecasts—EpiNow?2 0.16 -0.03 -0.19 -0.1 -0.35 -0.06 0.43 -0.08
w o 0 [w o m =
a L (O] [a] L (@]
location

bias .

-0.6-0.3 0.0 0.3 0.6

Figure 8: Heatmap of bias values for different models across different locations and forecast
targets. Bias values are bound between -1 (underprediction) and 1 (overprediction) and should
be 0 ideally. Red tiles indicate an upwards bias (overprediction), while blue tiles indicate a
downwards bias (under-predicction)

Weighted interval score decomposition

For quantile-based forecasts, the weighted interval score (WIS, Bracher et al. 2021a) is
commonly used and is a strictly proper scoring rule. The WIS treats the predictive quantiles
as a set of symmetric prediction intervals and measures the distance between the observation
and the forecast interval. It can be decomposed into a dispersion (uncertainty) component and
penalties for over- and underprediction. For a single interval, the interval score is computed
as 5 5

[Sa(Fy)= (u—0 +—-(-y) Uy <+ (y—u) 1y =)

——
dispersion

overprediction underprediction

where 1() is the indicator function, y is the observed value, and [and u are the § and 1 — &

quantiles of the predictive distribution F, i.e. the lower and upper bound of a single prediction
interval. For a set of K prediction intervals and the median m, the score is computed as a
weighted sum,

K
WIS = wo-!y—mHZwk-ISa(F,y)),

: (
K +0.5 =
where wy, is a weight for every interval. Usually, wy = % and wo = 0.5. It is helpful to
visualise the decomposition of the weighted interval score into its components: dispersion,
overprediction and underprediction. This can be achieved using the function plot_wis(), as

shown in Figure 9

15

16 Evaluating Forecasts with scoringutils in R

R> score(example_quantile) [>

+ summarise_scores(by = c("model", "target_type")) [>
+ plot_wis(relative_contributions = FALSE) +
+ facet_wrap(~ target_type,
+ scales = "free_x")
A B
Cases Deaths Cases Deaths
UMass-MechBayes

__ EuroCOVIDhub-ensemble

3

o

£

epiforecasts—EpiNow2

EuroCOVIDhub-baseline -

0 10000 20000 0 50 100 150 0.00 025 050 0.75 1.00 0.00 025 050 0.75 1.00
WIS contributions Normalised WIS contributions

WIS component . overprediction . underprediction . dispersion

Figure 9: Decomposition of the weighted interval score (WIS) into dispersion, overprediction
and underprediction. A: absolute contributions, B: contributions normalised to 1.

3.8. Correlations

Users can examine correlations between scores using the function correlation(). This pro-
duces an output of class XXX with its own plot method. The plot resulting from the following
code is shown in Figure 10.

R> correlations <- example_quantile [>
+ score() [>

+ summarise_scores() [>

+ correlation()

R>
R> correlations [>
+ plot()

3.9. Pairwise comparisons

3.10. Pairwise comparisons

Raw scores for different forecasting models are not directly comparable in the case of missing
forecasts, as forecasting targets usually differ in their characteristics (e.g., the scale of the
forecast target, how difficult targets are to forecast etc.). One way to mitigate this are
relative skill scores based on pairwise comparisons (Cramer et al. 2021).

Models enter a ‘pairwise tournament’, where all possible pairs of models are compared based
on the overlapping set of available forecasts common to both models (omitting comparisons

Journal of Statistical Software

= IR [e NG JL% I0S 4r:w Sl r:oo = Looo°“1 Fon]
e | e s e S - - -5 P e
T d e JLe® J 0% IFn JBed B o oo d Poodd
oo Ak e dhom 1w 4= J B o alboeod b ol b o d oo £
F e AP e JF 1B 5 o] (3 [= B o d L5
Foe JFe JPe JFa 1 I 3] [A Fo.] [Tk
= | AT] P | LY - s e e e B
i | e | s e e 2y) 7 | s f o B
B e 3R I & e o] Poeed B o o9 [|

-04 04 10 -04 04 10 -04 04 10 -04 04 10 -04 04 10

-0.2

0.0

-0.2

-0.4

2

Figure 10: Correlation between different scores

where there is no overlapping set of forecasts). For every pair, the ratio of the mean scores
of both models is computed. The relative skill score of a model is then the geometric mean
of all mean score ratios which involve that model. This gives us an indicator of performance
relative to all other models, with the orientation depending on the score used (if lower values
are better for a particular scoring rule, then the same is true for the relative skill score
computed based on that score). Two models can of course only be fairly compared if they
have overlapping forecasts. One simple rule of thumb one could apply is to only compare
models that have forecasts for at least 50% of the available targets, thereby ensuring that
all models have overlapping sets of forecasts. Furthermore, pairwise comparisons between
models for a given metric are only possible if all values have the same sign, i.e. all score values
need to be either positive or negative. The process of pairwise comparisons is illustrated in
Figure 11.

Relative skill scores via pairwise comparisons can be calculated in two different ways. The first
one is by calling the function pairiwse_comparison(). It takes a data.table (or similar)
of scores as input, and returns a data.table with the results of the pairwise tournament. It
displays the mean scores ratio for every pair of models, a p-value for whether scores for one
model are significantly different from scores for another model, and the relative skill score
for every model. Users can also specify a baseline model, in which case a scaled relative skill
scores is computed by dividing the relative skill score of every model by the relative skill score
of the baseline model. Another option is to call the function add_pairwise_comparison()
on the output of score() which will simply add additional columns for the relative skill and
scaled relative skill.

In both cases, pairwise comparisons are computed according to the grouping specified in the
argument by: internally, the data.table with all scores gets split into different data.tables
according to the values specified in by (excluding the column ‘model’). Relative scores are
then computed for every individual group separately. In the example below we specify by =
c("model", "target_type"), which means that there is one relative skill score per model,
calculated separately for the different forecasting targets.

17

18 Evaluating Forecasts with scoringutils in R

Forecast targets 1 3 4 86

‘EEEE (B
z

1 3 4 6 —
¥ 2 3 56

23 5 6 o
s @6 zxz/
s 136 5 B

raw scores score ratios relative skill scores

M1:
EEEEEE | oo (Zzyz
> ?X

Figure 11: Ilustration of the computation of relative skill scores through pairwise comparisons
of three different forecast models, M1-M3..

R> s <- score(example_quantile[horizon == 2])
R> pairwise_comparison(s, by = c("model", "target_type")) [>
+ print(1:3)

The output of pairwise_comparison() is an object of class XXX with its own plot()
method. An example is shown in Figure 12.

R> score(example_quantile) |[>

+ pairwise_comparison(by = c("model", "target_type"),

+ baseline = "EuroCOVIDhub-baseline") [>
+ plot_pairwise_comparison() +

+ facet_wrap(~ target_type)

It is in principle possible to compute p-values to determine whether two models perform sig-
nificantly differently. scoringutils allows to compute these using either the Wilcoxon rank sum
test (also known as Mann-Whitney-U test) (Mann and Whitney 1947) or a permutation test.
In practice, this is complicated by the fact that both tests assume independent observations.
In reality, however, forecasts by a model may be correlated across time or another dimension
(e.g., if a forecaster has a bad day, they might perform badly across different targets for a
given forecast date). P-values may therefore be too liberal in suggesting significant differences
where there aren’t any. One way to mitigate this is to aggregate observations over a category
where one suspects correlation (for example averaging across all forecasts made on a given
date) before making pairwise comparisons. A test that is performed on aggregate scores will
likely be more conservative.

Pairwise comparisons should usually be made based on unsummarised scores (the function
pairwise_comparison() internally summarises over samples and quantiles automatically,
but nothing else), as summarising can change the set of overlapping forecasts between two
models and distort relative skill scores. When using pairwise_comparison(), the function

Journal of Statistical Software

Cases Deaths
EuroCOVIDhub-ensemble 0.63 0.86 1 0.26 0.62 0.79 1
UMass—-MechBayes 0.33 0.74 1 1.27
epiforecasts—EpiNow2 0.73 1 1.16 0.42 1 1.34 1.61
EuroCOVIDhub-baseline 1 1.37 1.59 1 2.38 3.03 3.85
2 g 8 2 2 < 8 2
S 2 5y £ S S 5y £
0 z) @ 7] z) @
@ o = (%)] (=% < %)
o) m 3] c o] S c
: | g ? z | 3 ?
S 2 = & E; 2 = &
= 7] h S = 7] h S
=) I A < [a)] 2 =
= o < e = o < e
3 s 3 3 3 s 3 3
o o
2 s ‘T :
w =1 w S
m m

Figure 12: Ratios of mean weighted interval scores based on overlapping forecast sets. When
interpreting the plot one should look at the model on the y-axis, and the model on the x-axis is
the one it is compared against. If a tile is blue, then the model on the y-axis performed better.
If it is red, the model on the x-axis performed better in direct comparison. In the example
above, the EuroCOVIDhub-ensemble performs best (it only has values smaller than one),
while the EuroCOVIDhub-baseline performs worst (and only has values larger than one). For
cases, the UMass-MechBayes model is excluded as there are no case forecasts available and
therefore the set of overlapping forecasts is empty.

summarise_scores () should therefore usually not be called beforehand. One potential excep-
tion to this is when one is interested in the p-values obtained from pairwise comparisons. As
forecasts are usually highly correlated (which the calculation of p-values do not account for),
it may be sensible to summaries over a few categories (provided there are no missing values
within the categories summarised over) to reduce correlation and obtain more conservative
p-values.

4. Calibration

Calibration refers to a statistical consistency (i.e., absence of systematic deviations) between
the forecasts and the observations. It is possible to distinguish several forms of calibration
which are discussed in detail by Gneiting et al. (2007). The form of calibration most commonly
focused on is called probabilistic calibration (for other form of calibration, see Gneiting et al.
(2007)). Probabilistic calibration means that the forecast distributions are consistent with
the true data-generating distributions in the sense that on average, 7% of true observations
will be below the corresponding 7-%-quantiles of the cumulative forecast distributions.

4.1. Interval coverage and quantile coverage

This of course, can be most easily verified for predictive distributions in a quantile-based
format. For such forecasts, one can easily compare the proportion of observations that fall
below the 7-quantiles of all forecasts (“empirical quantile coverage”) to the nominal quantile

19

20 Evaluating Forecasts with scoringutils in R

coverage T.

The above definition of probabilistic calibration also implies that the empirical coverage of
the central prediction intervals formed by the predictive quantiles should be equal to the
nominal interval coverage. For example, the central 50% prediction intervals of all forecasts
should really contain around 50% of the observed values, the 90% central intervals should
contain around 90% of observations etc. Forecasts that are too narrow and do not cover
the required proportion of observations are called overconfident or underdispersed, while
predictive distributions that are too wide are often called underconfident, overdispersed or
conservative.

Users can obtain coverage values for quantile-based predictions in two different ways. The
first is to call the functions XXX and XXX directly as scoring rules within score() to
obtain coverage values for specific quantile-levels or central prediction intervals. A more
comprehensive way is by using the function add_coverage() directly on the raw forecasts.
It adds additional columns with the width of the central prediction interval corresponding
to a given quantile level, quantile coverage, interval coverage, quantile coverage deviation
and interval coverage deviation. Deviation here means the difference between nominal and
empirical coverage. Coverage for a single quantile or interval is only ever TRUE or FALSE.
Coverage values are therefore only meaningful when summarised over many forecasts. This
can be done calling summarise_scores(). Results can then be visualised using the function
plot_interval_coverage() (see row 3 in Figure 14) and plot_quantile_coverage() (row
4 in Figure 14). Both show nominal against empirical coverage. Ideally forecasters should
lie on the diagonal line. For interval coverage plots, a shift to the left means a forecaster is
too conservative and issues a predictive distribution that is too wide and covers more of the
observed values than needed. A shift to the right means a forecaster is overconfident and the
forecast distribution is too narrow. For quantile coverage plots, the interpretation depends on
whether the quantile is above or below the median. For quantiles below the median, a line to
the right of the diagonal (predictive quantiles lower than the quantiles of the data-generating
distribution) means a forecaster is too conservative, while for quantiles above the median, a
line to the left of the diagonal line (predictive quantiles higher than the quantiles of the data-
generating distribution) implies conservative predictions. Areas that imply a conservative
forecaster are shaded in green.

It is in principle possible to convert sample-based forecasts to quantile-based forecasts using
the function sample_to_quantile_forecastXXX() to make use of add_coverage(). This
should be done with caution, as the estimation of quantiles from predictive samples may be
biased if the number of available samples is not sufficiently large.

4.2. Probability integral transform (PIT)

A more natural way to visualise probabilistic calibration for sample-based forecasts (and
an alternative option for quantile-based ones) is the probability integral transform (PIT)
histogram (Dawid 1984).

Observed values, y, are transformed using the CDF of the predictive distribution, F', to
create a new variable u with u = F(y). u is therefore simply the CDF of the predictive
distribution evaluated at the observed value. If forecasts are probabilistically calibrated,
then the transformed values will be uniformly distributed (for a proof see for example Angus
(1994)). When plotting a histogram of PIT values (see row 2 in Figure 14), bias usually leads

Journal of Statistical Software

to a triangular shape, a U-shaped histogram corresponds to forecasts that are under-dispersed
(too sharp) and a hump-shape appears when forecasts are over-dispersed (too wide). There
exist different variations of the PIT to deal with discrete instead of continuous data (see
e.g. Czado, Gneiting, and Held (2009) and Funk et al. (2019)). The PIT version implemented
in scoringutils for discrete variables follows Funk et al. (2019).

..and create PIT histograms using the function plot_pit(). The output of the following is
shown in Figure 13:

R> example_continuous [>

+ pit(by = c("model", "target_type")) [>
+ plot_pit() +

+ facet_grid(target_type ~ model)

epiforecasts—EpiNow2 EuroCOVIDhub-baseline EuroCOVIDhub—ensemble UMass—MechBayes
0.3

0.2

sased

0.

[

0.25 050 0.75 1.00 0.25 . 0.75 1.00 0.25 . 0.75 1.00 0.25 050 0.75
PIT

Frequency
o O
® o

0.2

syreaq

0.

=

Figure 13: PIT histograms of all models stratified by forecast target. Histograms should
ideally be uniform. A u-shape usually indicates overconfidence (forecasts are too narrow),
a hump-shaped form indicates underconfidence (forecasts are too uncertain) and a triangle-
shape indicates bias.

It is in theory possible to formally test probabilistic calibration, for example by employing
an Anderson Darling test on the uniformity of PIT values. In practice this can be difficult
as forecasts and therefore also PIT values are often correlated. Personal experience suggests
that the Anderson Darling test is often too quick to reject the null hypothesis of uniformity.
It is also important to note that uniformity of the PIT histogram (or a diagonal on quantile
and interval coverage plots) indicates probabilistic calibration, but does not guarantee that
forecasts are indeed calibrated in every relevant sense. Gneiting et al. (2007); Hamill (2001)
provide examples with different forecasters who are clearly mis-calibrated, but have uniform
PIT histograms.

R> cov_scores <- score(example_quantile) [>
+ summarise_scores(by = c("model", "target_type", '"range", "quantile"))

21

22 Evaluating Forecasts with scoringutils in R
A
Pred: N(0, 1) Pred: N(0.5, 1) Pred: N(0, 2) Pred: N(0, 0.5)
0.8
= 0.6
2 04
Jo)
o
0.0
-10 -5 0 5 10 10 -5 0 5 10 -10 5 0 5 10 10 -5 0 5 10
Value
B
Pred: N(0, 1) Pred: N(0.5, 1) Pred: N(0, 2) Pred: N(0, 0.5)
- 0.06
%)
c
g 0.04
=
o)
* i Ml l | i |
e = - | T[]
0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.50 0.75 1.00 0.25 0.50 0.75 1.00
PIT
C
_ Pred: N(0, 1) Pred: N(0.5, 1) Pred: N(0, 2) Pred: N(0, 0.5)
(g 100
2
£ 75
8
2 50
£
2 25
o
R 0
0 25 50 75 100 100 0 100 0 25 50 75 100
Nomlnal interval coverage
D
© 100 Pred: N(0, 1) Pred: N(0.5, 1) Pred: N(0, 2) Pred: N(0, 0.5)
=
El
3 75
2
o 50
7]
o
8 25
o
2 0
& 0.00 0.25 0.50 0.75 1.00 0.00 0.75 1.00 0.00 0.2 1.00 0.00 0.25 0.50 0.75 1.00
Quantile
E
se_mean 0.92 1.2 0.92 0.92
ae_median 0.77 0.87 0.77 0.77
log_score 1.4 1.5 1.7 2.6
crps 0.54 0.62 0.64 0.58
dss 0.92 1.2 1.6 23
bias 0.0072 0.29 0.0033 0.0067
Pred: N(0.5, 1) Pred: N(0, 2) Pred: N(0, 0.5)

Pred: N(0, 1)

Figure 14: A: Different forecasting distributions (black) against observations sampled from a
standard normal distribution (grey histograms). B: PIT histograms based on the predictive
distributions and the sampled observations shown in A. C: Empirical vs. nominal coverage of
the central prediction intervals for simulated observations and predictions. Areas shaded in
green indicate that the forecasts are too wide (i.e., underconfident), covering more true values
than they actually should, while areas in white indicate that the model generates too narrow
predictions and fails to cover the desired proportion of true values with its prediction intervals.
D: Quantile coverage values, with green areas indicating too wide (i.e., conservative) forecasts.

E: Scores for the standard normal predictive distribution and the observations drawn from
different data-generating distributions.

R>

R> plot_interval_coverage (cov_scores) +
+ facet_wrap(~ target_type)

Journal of Statistical Software 23

R>
R> plot_quantile_coverage (cov_scores) +
+ facet_wrap(~ target_type)

A
Cases Deaths
100
©
2
3 75
£
3
5 50
£
2
o) 25
X
0 £
0 25 50 75 100 0 25 50 75 100
Nominal interval coverage
B
Cases Deaths
100
Q
g 75
=]
S
2
o 50
[9)
a
2
o 25
X
0
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Quantile
model epiforecasts-EpiNow2 — EuroCOVIDhub-baseline — EuroCOVIDhub-ensemble UMass—MechBayes

Figure 15: Interval coverage (A) and quantile coverage (B) plots. Areas shaded in green
indicate that the forecasts are too wide (i.e., underconfident), while areas in white indicate
that the model is overconfident and generates too narrow predictions intervals.

4.3. Bias

Another specific and very common form of miscalibration is bias, i.e. systematically over-
or underpredicting the observed values. scoringutils exports a bias metric bias_quantile ()
and bias_sample(). The implementation follows Funk et al. (2019) and captures how much
probability mass of the forecast was above or below the true value (mapped to values between
-1 and 1, with 0 being ideal). Values represent a general tendency to over- or under-predict
in relative terms. A value of -1 implies that the entire probability mass of the predictive
distribution was below the observed value (and analogously above it for a value of 1).

For forecasts in a quantile format, bias is also reflected in the over- and underprediction
components of the weighted interval score (a proper scoring rule explained in more detail in
Section ?7?). These measure over- and underprediction on an absolute scale (analogous to
the absolute error of a point forecast), rather than a relative scale. It is important to note
that it is not a priori clear what the decomposition ‘should’ look like - a forecast can be well
calibrated and still have different amounts of over- and underprediction. High overprediction
or underprediction values can therefore not immediately be interpreted as systematic bias.

24 Evaluating Forecasts with scoringutils in R

5. Summary and discussion

Future development plans

Forecast evaluation is invaluable to understanding and improving current forecasts. The
scoringutils package aims to facilitate this process and make it easier, even for less experienced
users. It provides a fast, flexible and convenient evaluation framework based on data.frames,
but also makes a set of scoring functions available to more experienced users to be used in other
packages or pipelines. A set of visualisations and plotting functions help with diagnosing issues
with models and allow for thorough comparison between different forecasting approaches.

The package is still under active development and we warmly welcome contributions to
scoringutils. In the future we hope to extend the number of scoring metrics supported.
This includes spherical scoring rules (Gneiting and Raftery 2007; Jose 2009; Machete 2012),
evaluation of multinomial prediction tasks, as well as a broader range of scoring metrics for
point forecasts. We also plan to expand the plotting functionality and hope to make templates
available for automated scoring reports.

6. Acknowledgments

Funding statements

NIB received funding from the Health Protection Research Unit (grant code NTHR200908).
HG MISSING. AC acknowledges funding by the NIHR, the Sergei Brin foundation, USAID,
and the Academy of Medical Sciences. EvL acknowledges funding by the National Insti-
tute for Health Research (NIHR) Health Protection Research Unit (HPRU) in Modelling and
Health Economics (grant number NIHR200908) and the European Union’s Horizon 2020 re-
search and innovation programme - project EpiPose (101003688). SF’s work was supported
by the Wellcome Trust (grant: 210758/Z/18/Z), and the NIHR (NIHR200908). SA’s work
was funded by the Wellcome Trust (grant: 210758/Z/18/Z). This study is partially funded
by the National Institute for Health Research (NIHR) Health Protection Research Unit in
Modelling and Health Economics, a partnership between UK Health Security Agency and
Imperial College London in collaboration with LSHTM (grant code NIHR200908); and ac-
knowledges funding from the MRC Centre for Global Infectious Disease Analysis (reference
MR/R015600/1), jointly funded by the UK Medical Research Council (MRC) and the UK
Foreign, Commonwealth & Development Office (FCDO), under the MRC/FCDO Concordat
agreement and is also part of the EDCTP2 programme supported by the European Union.
Disclaimer: “The views expressed are those of the author(s) and not necessarily those of the
NIHR, UKHSA or the Department of Health and Social Care. We thank Community Jameel
for Institute and research funding

Journal of Statistical Software 25

(APPENDIX) Detailed Information on Metrics

Metric Explanation

CRPS The crps is a proper scoring rule that generalises the absolute error to
(Continuous) probabilistic forecasts. It measures the 'distance’ of the predictive
ranked distribution to the observed data-generating distribution. The CRPS

probability score

is given as

o0
CRPS(Fy) = [(Fl@) — 1o > y))dw,
—0o0
where y is the true observed value and F the CDF of predictive
distribution. Often An alternative representation is used:

1

where X and X’ are independent realisations from the predictive
distributions F' with finite first moment and y is the true value. In
this representation we can simply replace X and X’ by samples sum
over all possible combinations to obtain the CRPS. For integer-valued
forecasts, the RPS is given as

(e.9]

RPS(F,y) = Y (F(z) - 1(z > y))*.

=0

Usage and caveats Smaller values are better. The crps is a good
choice for most practical purposes that involve decision making, as it
takes the entire predictive distribution into account. If two forecasters
assign the same probability to the true event y, then the forecaster
who assigned high probability to events far away from y will still get
a worse score. The crps (in contrast to the log score) can at times be
quite lenient towards extreme mispredictions. Also, due to it’s
similarity to the absolute error, the level of scores depend a lot on the
absolute value of what is predicted, which makes it hard to compare
scores of forecasts for quantities that are orders of magnitude apart.

Table 1: Detailed explanation of all the metrics.

26 Evaluating Forecasts with scoringutils in R
Metric Explanation
Log score The Log score is a proper scoring rule that is computed as the

negative log of the predictive density evaluated at the true observed
value. It is given as

log score = —log f(y),

where f is the predictive density function and y is the true value. For
integer-valued forecasts, the log score can be computed as

log score = — log py,

where p, is the probability assigned to outcome p by the forecast F.
Usage and caveats: Smaller values are better, but sometimes the
sign is reversed. The log score is sensitive to outliers, as individual log
score contributions quickly can become very large if the event falls in
the tails of the predictive distribution, where f(y) (or p,) is close to
zero. Whether or not that is desirable depends on the application. In
scoringutils, the log score cannot be used for integer-valued forecasts,
as the implementation requires a predictive density. In contrast to
the crps, the log score is a local scoring rule: it’s value only depends
only on the probability that was assigned to the actual outcome.
This property may be desirable for inferential purposes, for example
in a Bayesian context (Winkler et al., 1996). In settings where
forecasts inform decision making, it may be more appropriate to score
forecasts based on the entire predictive distribution.

Table 1: Detailed explanation of all the metrics.

Journal of Statistical Software

Metric

Explanation

WIS (Weighted)

interval score

DSS Dawid-
Sebastiani score

The (weighted) interval score is a proper scoring rule for quantile
forecasts that converges to the crps for an increasing number of
intervals. The score can be decomposed into a sharpness
(uncertainty) component and penalties for over- and underprediction.
For a single interval, the score is computed as

ISa(Fy) = (u=D)+ = (1= y) My S D+ > - (y—u) 1y 2 w),

where 1() is the indicator function, y is the true value, and [and u
are the § and 1 — § quantiles of the predictive distribution F, i.e.
the lower and upper bound of a single prediction interval. For a set of
K prediction intervals and the median m, the score is computed as a
weighted sum,

K
(wo - ly —m|+ Y wi - ISa(F,y)),
k=1

1
WIS =——
5= X%+05

where wy, is a weight for every interval. Usually, wy, = % and

wo = 0.5.

Usage and caveats: Smaller scores are better. Applicable to all
quantile forecasts, takes the entire predictive distribution into
account. Just as the crps, the wis is based on measures of absolute
error. When averaging across multiple targets, it will therefore be
dominated by targets with higher absolute values. The decomposition
into sharpness, over- and underprediction make it easy to interpret
scores and use them for model improvement.

The Dawid-Sebastiani-Score is a proper scoring rule proposed that
only relies on the first moments of the predictive distribution and is
therefore easy to compute. It is given as

N2
dss(F,y) = (y,u) +2-logo,
o

where F' is the predictive distribution with mean p and standard
deviation ¢ and y is the true observed value.

Usage and caveats The dss is applicable to continuous and integer
forecasts and easy to compute. Apart from the ease of computation
we see little advantage in using it over other scores.

Table 1: Detailed explanation of all the metrics.

27

28

Evaluating Forecasts with scoringutils in R

Metric

Explanation

Brier score

Interval
coverage

Quantile
coverage

Proper scoring rule for binary forecasts. The Brier score is computed

as
N

Brier Score =]t;(fn — Un)s
where f,, with n =1,..., N are the predicted probablities that the
corresponding events, y,, € (0,1) will be equal to one.)
Usage: Applicable to all binary forecasts.

Interval coverage measures the proportion of observed values that fall
in a given prediction interval range. Interval coverage for a single
prediction interval range can be calculated as

1C, = nominal coverage — empirical coverage,

where nominal coverage is 1 — a and empirical coverage is the
proportion of true values actually covered by all 1 — « prediction
intervals.

To summarise interval coverage over different over multiple interval
ranges, we can compute coverage deviation defined as the mean
interval coverage over all K interval ranges oy with k =1,..., K:

K
1
C deviati :—E IC
overage deviation 2 .

Usage: Interval coverage for a set of chosen intervals, (e.g. 50% and
90%) gives a good indication of marginal calibration and is easy to
interpret. Reporting coverage deviation has the advantage of
summarising calibration in a single number, but loses some of the
nuance.

Quantile coverage for a given quantile level is the proportion of true
values smaller than the predictions corresponding to that quantile
level.

Usage: Quantile coverage is similar to interval coverage, but conveys
more information. For example, it allows us to look at the 5% and
95% quantile separately, instead of jointly at the 90% prediction
interval). This helps to diagnose whether it is the upper or lower end
of a prediction interval that is causing problems. Plots of quantile
coverage are conceptually very similar to PIT histograms.

Table 1: Detailed explanation of all the metrics.

Journal of Statistical Software

Metric Explanation
Probability The probability integral transform (PIT, Dawid 1984) represents a
integral succinct way to visualise deviations between the predictive

transform (PIT)

distribution F' and the true data-generating distribution G. The idea
is to transform the observed values such that agreement between
forecasts and data can then be examined by observing whether or not
the transformed values follow a uniform distribution. The PIT is
given by

u=F(y),

where v is the transformed variable and F(y) is the predictive
distribution F' evaluated at the true observed value y. If F = G, then
u follows a uniform distribution.

For integer outcomes, the PIT is no longer uniform even when
forecasts are ideal. Instead, a randomised PIT can be used:

u=P(y) +v-(Py) — Ply—1)),

where y is again the observed value P() is the cumulative probability
assigned to all values smaller or equal to y (where P(—1) = 0 by
definition, and v is a standard uniform variable independent of y. If
P is equal to the true data-generating distribution function, then u is
standard uniform. also propose a non-randomised version of the PIT
for count data that could be used alternatively.

Usage: One can plot a histogram of u values to look for deviations
from uniformity. U-shaped histograms often result from predictions
that are too narrow, while hump-shaped histograms indicate that
predictions may be too wide. Biased predictions will usually result in
a triangle-shaped histogram. One can also test for deviations from
normality, using for example an Anderson-Darling test. This,
however, proves to be overly strict in practice and even slight
deviations from perfect calibration are punished in a way that makes
it very hard to compare models at all. In addition, errors from
forecasts may be correlated (i.e. forecasts made on a given date),
potentially violating the assumptions of the Anderson-Darling test.
We therefore do not recommend it for most use cases.

Table 1: Detailed explanation of all the metrics.

29

30 Evaluating Forecasts with scoringutils in R
Metric Explanation
Sharpness Sharpness is the ability to produce narrow forecasts and is a feature

of the forecasts only and does not depend on the observations.
Sharpness is therefore only of interest conditional on calibration: a
very precise forecast is not useful if it is clearly wrong.

As suggested by Funk et al. (2019), we measure sharpness for
continuous and integer forecasts represented by predictive samples as
the normalised median absolute deviation about the median (MADN)
), i.e.

S(F) = 6% median(|z — median(x)|),
where x is the vector of all predictive samples and ﬁ is a
normalising constant. If the predictive distribution F' is the CDF of a
normal distribution, then sharpness will equal the standard deviation
of F.

For quantile forecasts we can directly use the sharpness component of
the weighted interval score. Sharpness is then simply the weighted
mean of the widths of the central prediction intervals.

Table 1: Detailed explanation of all the metrics.

Journal of Statistical Software 31

Metric

Explanation

Bias

Bias is a measure of the tendency of a forecaster to over- or
underpredict. For continuous forecasts, bias is given as

B(F,y) =1-2-(F(y)),

where F' is the CDF of the predictive distribution and y is the
observed value.
For integer-valued forecasts, bias can be calculated as

B(Py) =1—(P(y) + Py + 1)),

where P(y) is the cumulative probability assigned to all outcomes
smaller or equal to y.

For quantile forecasts, Bias can be calculated as the maximum
percentile rank for which the prediction is smaller than y, if the true
value is smaller than the median of the predictive distribution. If the
true value is above the median of the predictive distribution, then
bias is the minimum percentile rank for which the corresponding
quantile is still larger than the true value. If the true value is exactly
the median, bias is zero. For a large enough number of quantiles, the
percentile rank will equal the proportion of predictive samples below
the observed true value, and this metric coincides with the one for
continuous forecasts.

Usage: In contrast to the over- and underprediction penalties of the
interval score it is bound between 0 and 1 and represents the
tendency of forecasts to be biased rather than the absolute amount of
over- and underprediction. It is therefore a more robust
measurement, but harder to interpet. It largely depends on the
application whether one is more interested in the tendency to be
biased or in the absolute value of over- and underpredictions.

Table 1: Detailed explanation of all the metrics.

32

Evaluating Forecasts with scoringutils in R

Metric

Explanation

Mean score ratio

Relative skill

The mean score ratio is used to compare two models on the
overlapping set of forecast targets for which both models have made a
prediction. The mean score ratio is calculated as the mean score
achieved by the first model over the mean score achieved by the
second model. More precisely, for two models %, j, we determine the
set of overlapping forecasts, denoted by A;; and compute the mean
score ratio 0;; as

mean score model 7 on A;;
Hij = = .
mean score model j on A;;

The mean score ratio can in principle be computed for any arbitrary
score.

Usage: Mean scores ratios are usually calculated in the context of
pairwise comparisons, where a set of models is compared by looking
at mean score ratios of all possible parings. Whether smaller or larger
values are better depends on the orientation of the original score used

Relative skill scores can be used to obtain a ranking of models based
on pairwise comparisons between all models. To compute the relative
skill 8; of model 7, we take the geometric mean of all mean score
ratios that involve model i, i.e.

o 1/M
;i = (H 0im> ;
m=1

where M is the number of models.

Usage and caveats: Relative skill is a helpful way to obtain a
model ranking. Whether smaller or larger values are better depends
on the orientation of the original score used. It is in principle
relatively robust against biases that arise when models only forecast
some of the available targets and is a reasonable way to handle
missing forecasts. One possible precautionary measure to reduces
issues with missing forecasts is to only compare models that have
forecasted at least half of all possible targets (this ensures that there
is always an overlap between models). If there is no overlap between
models, the relative skill implicitly estimates how a model would have
forecasted on those missing targets.

Journal of Statistical Software

References

Angus JE (1994). “The Probability Integral Transform and Related Results.” SIAM Review,
36(4), 652—654. ISSN 0036-1445. doi:10.1137/1036146.

Bosse NI, Abbott S, Cori A, van Leeuwen E, Bracher J, Funk S (2023). “Scoring Epidemio-
logical Forecasts on Transformed Scales” PLOS Computational Biology, 19(8), e1011393.
ISSN 1553-7358. doi:10.1371/journal.pcbi.1011393.

Bracher J, Ray EL, Gneiting T, Reich NG (2021a). “Evaluating Epidemic Forecasts in an
Interval Format.” PLoS computational biology, 17(2), e1008618. ISSN 1553-7358. doi:
10.1371/journal .pcbi.1008618.

Bracher J, Wolffram D, Deuschel J, Gorgen K, Ketterer JL, Ullrich A, Abbott S, Barbarossa
MYV, Bertsimas D, Bhatia S, Bodych M, Bosse NI, Burgard JP, Castro L, Fairchild G,
Fuhrmann J, Funk S, Gogolewski K, Gu Q, Heyder S, Hotz T, Kheifetz Y, Kirsten H,
Krueger T, Krymova E, Li ML, Meinke JH, Michaud 1J, Niedzielewski K, Ozanski T,
Rakowski F, Scholz M, Soni S, Srivastava A, Zielinski J, Zou D, Gneiting T, Schienle M
(2021b). “Short-Term Forecasting of COVID-19 in Germany and Poland during the Second
Wave — a Preregistered Study.” medRziv, p. 2020.12.24.20248826. doi:10.1101/2020.12.
24.20248826.

Cramer E, Ray EL, Lopez VK, Bracher J, Brennen A, Rivadeneira AJC, Gerding A, Gneiting
T, House KH, Huang Y, Jayawardena D, Kanji AH, Khandelwal A, Le K, Miithlemann A,
Niemi J, Shah A, Stark A, Wang Y, Wattanachit N, Zorn MW, Gu Y, Jain S, Bannur N,
Deva A, Kulkarni M, Merugu S, Raval A, Shingi S, Tiwari A, White J, Woody S, Dahan
M, Fox S, Gaither K, Lachmann M, Meyers LA, Scott JG, Tec M, Srivastava A, George
GE, Cegan JC, Dettwiller ID, England WP, Farthing MW, Hunter RH, Lafferty B, Linkov
I, Mayo ML, Parno MD, Rowland MA, Trump BD, Corsetti SM, Baer TM, Eisenberg MC,
Falb K, Huang Y, Martin ET, McCauley E, Myers RL, Schwarz T, Sheldon D, Gibson GC,
YuR, Gao L, Ma Y, Wu D, Yan X, Jin X, Wang YX, Chen Y, Guo L, Zhao Y, Gu @, Chen
J, Wang L, Xu P, Zhang W, Zou D, Biegel H, Lega J, Snyder TL, Wilson DD, McConnell
S, Walraven R, Shi Y, Ban X, Hong QJ, Kong S, Turtle JA, Ben-Nun M, Riley P, Riley
S, Koyluoglu U, DesRoches D, Hamory B, Kyriakides C, Leis H, Milliken J, Moloney M,
Morgan J, Ozcan G, Schrader C, Shakhnovich E, Siegel D, Spatz R, Stiefeling C, Wilkinson
B, Wong A, Gao Z, Bian J, Cao W, Ferres JL, Li C, Liu TY, Xie X, Zhang S, Zheng S,
Vespignani A, Chinazzi M, Davis JT, Mu K, y Piontti AP, Xiong X, Zheng A, Baek J,
Farias V, Georgescu A, Levi R, Sinha D, Wilde J, Penna ND, Celi LA, Sundar S, Cavany
S, Espana G, Moore S, Oidtman R, Perkins A, Osthus D, Castro L, Fairchild G, Michaud
I, Karlen D, Lee EC, Dent J, Grantz KH, Kaminsky J, Kaminsky K, Keegan LT, Lauer
SA, Lemaitre JC, Lessler J, Meredith HR, Perez-Saez J, Shah S, Smith CP, Truelove SA,
Wills J, Kinsey M, Obrecht RF, Tallaksen K, Burant JC, Wang L, Gao L, Gu Z, Kim M,
Li X, Wang G, Wang Y, Yu S, Reiner RC, Barber R, Gaikedu E, Hay S, Lim S, Murray C,
Pigott D, Prakash BA, Adhikari B, Cui J, Rodriguez A, Tabassum A, Xie J, Keskinocak
P, Asplund J, Baxter A, Oruc BE, Serban N, Arik SO, Dusenberry M, Epshteyn A, Kanal
E, Le LT, Li CL, Pfister T, Sava D, Sinha R, Tsai T, Yoder N, Yoon J, Zhang L, Abbott S,
Bosse NI, Funk S, Hellewel J, Meakin SR, Munday JD, Sherratt K, Zhou M, Kalantari R,
Yamana TK, Pei S, Shaman J, Ayer T, Adee M, Chhatwal J, Dalgic OO, Ladd MA, Linas

33

https://doi.org/10.1137/1036146
https://doi.org/10.1371/journal.pcbi.1011393
https://doi.org/10.1371/journal.pcbi.1008618
https://doi.org/10.1371/journal.pcbi.1008618
https://doi.org/10.1101/2020.12.24.20248826
https://doi.org/10.1101/2020.12.24.20248826

34 Evaluating Forecasts with scoringutils in R

BP, Mueller P, Xiao J, Li ML, Bertsimas D, Lami OS, Soni S, Bouardi HT, Wang Y, Wang
Q, Xie S, Zeng D, Green A, Bien J, Hu AJ, Jahja M, Narasimhan B, Rajanala S, Rumack
A, Simon N, Tibshirani R, Tibshirani R, Ventura V, Wasserman L, O’Dea EB, Drake
JM, Pagano R, Walker JW, Slayton RB, Johansson M, Biggerstaff M, Reich NG (2021).
“Evaluation of Individual and Ensemble Probabilistic Forecasts of COVID-19 Mortality in
the US.” medRxiv, p. 2021.02.03.21250974. doi:10.1101/2021.02.03.21250974.

Cramer E, Reich NG, Wang SY, Niemi J, Hannan A, House K, Gu Y, Xie S, Horstman S,
aniruddhadiga, Walraven R, starkari, Li ML, Gibson G, Castro L, Karlen D, Wattanachit
N, jinghuichen, zyt9lsb, aagarwall1996, Woody S, Ray E, Xu FT, Biegel H, GuidoEspana,
X X, Bracher J, Lee E, har96, leyouz (2020). “COVID-19 Forecast Hub: 4 December 2020
Snapshot.” doi:10.5281/zenodo.3963371.

Czado C, Gneiting T, Held L (2009). “Predictive Model Assessment for Count Data.” Bio-
metrics, 65(4), 1254-1261. ISSN 1541-0420. doi:10.1111/j.1541-0420.2009.01191.x.

Dawid AP (1984). “Present Position and Potential Developments: Some Personal Views
Statistical Theory the Prequential Approach.” Journal of the Royal Statistical Society:
Series A (General), 147(2), 278-290. ISSN 2397-2327. doi:10.2307/2981683.

Dowle M, Srinivasan A (2023). data.table: Extension of ‘data.frame‘. R package version
1.14.8, URL https://CRAN.R-project.org/package=data.table.

Elliott G, Timmermann A (2016). “Forecasting in Economics and Finance.” Annual Review
of Economics, 8(1), 81-110. doi:10.1146/annurev-economics-080315-015346.

Epstein ES (1969). “A Scoring System for Probability Forecasts of Ranked Cate-
gories.” Journal of Applied Meteorology, 8(6), 985-987. ISSN 0021-8952. doi:10.1175/
1520-0450(1969) 008<0985: ASSFPF>2.0.C0; 2.

European Covid-19 Forecast Hub (2021). “European Covid-19 Forecast Hub.”
https://covid19forecasthub.eu/.

Funk S, Abbott S, Atkins BD, Baguelin M, Baillie JK, Birrell P, Blake J, Bosse NI, Burton J,
Carruthers J, Davies NG, Angelis DD, Dyson L, Edmunds WJ, Eggo RM, Ferguson NM,
Gaythorpe K, Gorsich E, Guyver-Fletcher G, Hellewell J, Hill EM, Holmes A, House TA,
Jewell C, Jit M, Jombart T, Joshi I, Keeling MJ, Kendall E, Knock ES, Kucharski AJ,
Lythgoe KA, Meakin SR, Munday JD, Openshaw PJM, Overton CE, Pagani F, Pearson J,
Perez-Guzman PN, Pellis L, Scarabel F, Semple MG, Sherratt K, Tang M, Tildesley MJ,
van Leeuwen E, Whittles LK, Group CCW, Team ICCR, Investigators I (2020). “Short-
Term Forecasts to Inform the Response to the Covid-19 Epidemic in the UK.” medRziv, p.
2020.11.11.20220962. doi:10.1101/2020.11.11.20220962.

Funk S, Camacho A, Kucharski AJ, Lowe R, Eggo RM, Edmunds WJ (2019). “Assessing the
Performance of Real-Time Epidemic Forecasts: A Case Study of Ebola in the Western Area
Region of Sierra Leone, 2014-15” PLOS Computational Biology, 15(2), e1006785. ISSN
1553-7358. doi:10.1371/journal.pcbi.1006785.

Gneiting T, Balabdaoui F, Raftery AE (2007). “Probabilistic Forecasts, Calibration and
Sharpness.” Journal of the Royal Statistical Society: Series B (Statistical Methodology),
69(2), 243-268. ISSN 1467-9868. doi:10.1111/j.1467-9868.2007.00587 . x.

https://doi.org/10.1101/2021.02.03.21250974
https://doi.org/10.5281/zenodo.3963371
https://doi.org/10.1111/j.1541-0420.2009.01191.x
https://doi.org/10.2307/2981683
https://CRAN.R-project.org/package=data.table
https://doi.org/10.1146/annurev-economics-080315-015346
https://doi.org/10.1175/1520-0450(1969)008<0985:ASSFPF>2.0.CO;2
https://doi.org/10.1175/1520-0450(1969)008<0985:ASSFPF>2.0.CO;2
https://doi.org/10.1101/2020.11.11.20220962
https://doi.org/10.1371/journal.pcbi.1006785
https://doi.org/10.1111/j.1467-9868.2007.00587.x

Journal of Statistical Software

Gneiting T, Raftery AE (2005). “Weather Forecasting with Ensemble Methods.” Science,
310(5746), 248-249. ISSN 0036-8075, 1095-9203. doi:10.1126/science.1115255.

Gneiting T, Raftery AE (2007). “Strictly Proper Scoring Rules, Prediction, and Estimation.”
Journal of the American Statistical Association, 102(477), 359-378. ISSN 0162-1459, 1537-
274X. doi:10.1198/016214506000001437.

Good 1J (1952). “Rational Decisions.” Journal of the Royal Statistical Society. Series B
(Methodological), 14(1), 107-114. ISSN 0035-9246. 2984087.

Hamill TM (2001). “Interpretation of Rank Histograms for Verifying Ensemble Forecasts.”
Monthly Weather Review, 129(3), 550-560. ISSN 1520-0493, 0027-0644. doi:10.1175/
1520-0493(2001) 129<0550: IORHFV>2.0.C0; 2.

Hamner B, Frasco M (2018). Metrics: Evaluation Metrics for Machine Learning. R package
version 0.1.4, URL https://CRAN.R-project.org/package=Metrics.

Jordan A, Kriiger F, Lerch S (2019). “Evaluating Probabilistic Forecasts with scoringRules.”
Journal of Statistical Software, 90(12), 1-37. doi:10.18637/jss.v090.112.

Jose VR (2009). “A Characterization for the Spherical Scoring Rule.” Theory and Decision,
66(3), 263—281. ISSN 1573-7187. doi:10.1007/s11238-007-9067-x.

Kuhn M, Vaughan D, Hvitfeldt E (2023a). yardstick: Tidy Characterizations of Model
Performance. R package version 1.2.0, URL https://CRAN.R-project.org/package=
yardstick.

Kuhn M, Vaughan D, Ruiz E (2023b). probably: Tools for Post-Processing Class Probabil-
ity Estimates. R package version 1.0.2, URL https://CRAN.R-project.org/package=
probably.

Kuhn M, Wickham H (2020). Tidymodels: a collection of packages for modeling and machine
learning using tidyverse principles. URL https://www.tidymodels.org.

Kukkonen J, Olsson T, Schultz DM, Baklanov A, Klein T, Miranda AI, Monteiro A, Hirtl M,
Tarvainen V, Boy M, Peuch VH, Poupkou A, Kioutsioukis I, Finardi S, Sofiev M, Sokhi
R, Lehtinen KEJ, Karatzas K, San José R, Astitha M, Kallos G, Schaap M, Reimer E,
Jakobs H, Eben K (2012). “A Review of Operational, Regional-Scale, Chemical Weather
Forecasting Models in Europe.” Atmospheric Chemistry and Physics, 12(1), 1-87. ISSN
1680-7316. doi:10.5194/acp-12-1-2012.

Laboratory NRA (2015). werification: Weather Forecast Verification Utilities. R package
version 1.42, URL https://CRAN.R-project.org/package=verification.

Liboschik T, Fokianos K, Fried R (2017). “tscount: An R Package for Analysis of Count
Time Series Following Generalized Linear Models.” Journal of Statistical Software, 82(5),
1-51. d0i:10.18637/jss.v082.105.

Machete RL (2012). “Contrasting Probabilistic Scoring Rules.” arXiv:1112.4530 [math, stat].
1112.4530.

35

https://doi.org/10.1126/science.1115255
https://doi.org/10.1198/016214506000001437
2984087
https://doi.org/10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2
https://doi.org/10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2
https://CRAN.R-project.org/package=Metrics
https://doi.org/10.18637/jss.v090.i12
https://doi.org/10.1007/s11238-007-9067-x
https://CRAN.R-project.org/package=yardstick
https://CRAN.R-project.org/package=yardstick
https://CRAN.R-project.org/package=probably
https://CRAN.R-project.org/package=probably
https://www.tidymodels.org
https://doi.org/10.5194/acp-12-1-2012
https://CRAN.R-project.org/package=verification
https://doi.org/10.18637/jss.v082.i05
1112.4530

36 Evaluating Forecasts with scoringutils in R

Mann HB, Whitney DR (1947). “On a Test of Whether One of Two Random Variables Is
Stochastically Larger than the Other.” The Annals of Mathematical Statistics, 18(1), 50-60.
ISSN 0003-4851, 2168-8990. doi:10.1214/aoms/1177730491.

Matheson JE, Winkler RL (1976). “Scoring Rules for Continuous Probability Distributions.”
Management Science, 22(10), 1087-1096. ISSN 0025-1909. doi:10.1287/mnsc.22.10.
1087.

Merkle EC, Steyvers M (2013). “Choosing a Strictly Proper Scoring Rule.” Decision Analysis,
10, 292-304.

Meyer S, Held L, Hohle M (2017). “Spatio-Temporal Analysis of Epidemic Phenomena Using
the R Package surveillance.” Journal of Statistical Software, 77(11), 1-55. doi:10.18637/
jss.vO077.1i11.

Murphy AH (1971). “A Note on the Ranked Probability Score.” Journal of Applied Meteo-
rology and Climatology, 10(1), 155-156. ISSN 1520-0450. doi:10.1175/1520-0450(1971)
010<0155:ANOTRP>2.0.C0O; 2.

O’Hara-Wild M, Hyndman R, Wang E (2023). fabletools: Core Tools for Packages in the ’fa-
ble’ Framework. R package version 0.3.4, URL https://CRAN.R-project.org/package=
fabletools.

R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Reich NG, Brooks LC, Fox SJ, Kandula S, McGowan CJ, Moore E, Osthus D, Ray EL,
Tushar A, Yamana TK, Biggerstaff M, Johansson MA, Rosenfeld R, Shaman J (2019). “A
Collaborative Multiyear, Multimodel Assessment of Seasonal Influenza Forecasting in the
United States.” Proceedings of the National Academy of Sciences, 116(8), 3146-3154. ISSN
0027-8424, 1091-6490. doi:10.1073/pnas.1812594116.

Rizopoulos D (2019). cvGEE: Cross-Validated Predictions from GEE. R package version
0.3-0, URL https://CRAN.R-project.org/package=cvGEE.

Rizopoulos D (2023). GLMMadaptive: Generalized Linear Mixed Models using Adaptive
Gaussian Quadrature. R package version 0.9-0, URL https://CRAN.R-project.org/
package=GLMMadaptive.

Sadatsafavi M, Safari A, Lee TY (2023). predtools: Prediction Model Tools. R package version
0.0.3, URL https://CRAN.R-project.org/package=predtools.

Siegert S (2020). SpecsVerification: Forecast Verification Routines for Ensemble Forecasts
of Weather and Climate. R package version 0.5-3, URL https://CRAN.R-project.org/
package=SpecsVerification.

Timmermann A (2018). “Forecasting Methods in Finance” Annual Review of Financial
Economics, 10(1), 449-479. doi:10.1146/annurev-financial-110217-022713.

Yan Y (2016). MLmetrics: Machine Learning Evaluation Metrics. R package version 1.1.1,
URL https://CRAN.R-project.org/package=MLmetrics.

https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1287/mnsc.22.10.1087
https://doi.org/10.1287/mnsc.22.10.1087
https://doi.org/10.18637/jss.v077.i11
https://doi.org/10.18637/jss.v077.i11
https://doi.org/10.1175/1520-0450(1971)010<0155:ANOTRP>2.0.CO;2
https://doi.org/10.1175/1520-0450(1971)010<0155:ANOTRP>2.0.CO;2
https://CRAN.R-project.org/package=fabletools
https://CRAN.R-project.org/package=fabletools
https://www.R-project.org/
https://doi.org/10.1073/pnas.1812594116
https://CRAN.R-project.org/package=cvGEE
https://CRAN.R-project.org/package=GLMMadaptive
https://CRAN.R-project.org/package=GLMMadaptive
https://CRAN.R-project.org/package=predtools
https://CRAN.R-project.org/package=SpecsVerification
https://CRAN.R-project.org/package=SpecsVerification
https://doi.org/10.1146/annurev-financial-110217-022713
https://CRAN.R-project.org/package=MLmetrics

Journal of Statistical Software 37

Zeileis A, Lang MN (2022). topmodels: Infrastructure for Inference and Forecasting in Prob-
abilistic Models. R package version 0.1-0/r1498, URL https://R-Forge.R-project.org/
projects/topmodels/.

Affiliation:

Nikos I. Bosse

London School of Hygiene & Tropical Medicine (LSHTM)
Centre for Mathematical Modelling of Infectious Diseases
London School of Hygiene & Tropical Medicine

Keppel Street

London WC1E 7THT

E-mail: nikos.bosse@lshtm.ac.uk

URL: https://1shtm.ac.uk

Hugo Gruson

LSHTM

Centre for Mathematical Modelling of Infectious Diseases
London School of Hygiene & Tropical Medicine

Keppel Street

London WCI1E 7THT

E-mail: hugo.gruson@lshtm.ac.uk

Anne Cori

Imperial College London

MRC Centre for Global Infectious Disease Analysis, School of Public Health
Imperial College London

Norfolk Place

London W2 1PG

E-mail: a.cori@imperial.ac.uk

Edwin van Leeuwen

UK Health Security Agency, LSHTM

Statistics, Modelling and Economics Department
UK Health Security Agency

London NW9 5EQ

E-mail: Edwin.VanLeeuwen@phe.gov.uk

https://R-Forge.R-project.org/projects/topmodels/
https://R-Forge.R-project.org/projects/topmodels/
mailto:nikos.bosse@lshtm.ac.uk
https://lshtm.ac.uk
mailto:hugo.gruson@lshtm.ac.uk
mailto:a.cori@imperial.ac.uk
mailto:Edwin.VanLeeuwen@phe.gov.uk

38 Evaluating Forecasts with scoringutils in R

Sebastian Funk

LSHTM

Centre for Mathematical Modelling of Infectious Diseases
London School of Hygiene & Tropical Medicine

Keppel Street

London WC1E 7THT

E-mail: sebastian.funk@lshtm.ac.uk

Sam Abbott

LSHTM

Centre for Mathematical Modelling of Infectious Diseases
London School of Hygiene & Tropical Medicine

Keppel Street

London WC1E 7THT

E-mail: sam.abbott@lshtm.ac.uk

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/
MMMMMM YYYY, Volume VV, Issue II Submitted: yyyy-mm-dd

d0i:10.18637/jss.v000.100 Accepted: yyyy-mm-dd

mailto:sebastian.funk@lshtm.ac.uk
mailto:sam.abbott@lshtm.ac.uk
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v000.i00

	Introduction
	Package overview
	Basic workflow
	Forecast types
	Classes
	Example data
	Diagnostic functions that provide additional information about the data
	Visualising the data

	Scoring forecasts
	score()
	Scoring rules
	Passing scoring rules to score()
	The unit of a single forecast
	Transforming forecasts
	Summarising scores
	Additional visualisations of scores
	Heatmaps
	Weighted interval score decomposition

	Correlations
	Pairwise comparisons
	Pairwise comparisons

	Calibration
	Interval coverage and quantile coverage
	Probability integral transform (PIT)
	Bias

	Summary and discussion
	Acknowledgments
	(APPENDIX) Detailed Information on Metrics

