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LearningUndirected Graphs
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State of the art:

maximize
Θ

log g detΘ− tr(SΘ)− α‖Θ‖1,o�,
subject to Θ ∈ SL,

(1)

SL =
{
Θ ∈ Rp×p : Θ1 = 0,Θij = Θji ≤ 0,Θ � 0

}
. (2)

Existingmethods fall short to impose prior knowledge of the graph structure
Practical implications: the above framework can’t handle multimodal
graphs (e.g. k-component graphs)



Imposing Spectral Constraints
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To overcome the shortcomings of the previous framework, we propose to constrain the
eigenvalues ofΘ:

maximize
Θ

log g detΘ− tr(SΘ)− α‖Θ‖1,o�,
subject to Θ ∈ SL, λ(Θ) ∈ Sλ,

(3)

For k-component graph:
Sλ = {{λi}pi=1 : λ1 = . . . = λk = 0, 0 < λk+1 ≤ . . . ≤ λp}
Major issue: NP-hard.



Approximately Imposing Spectral Constraints
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Approximating (3):

minimize
w,λ,U

− log gdet (Diag(λ)) + tr (SLw) + α‖Lw‖1 + β
2

∥∥Lw− UDiag(λ)UT∥∥2F
subject to w ≥ 0,λ ∈ Sλ,UTU = I

(4)
whereL is a linear operator that maps a p× (p− 1)-vector into a valid p× p Laplacian
matrix.

Although still non-convex, we proposed a convergent, e�icient algorithm
based on the block successive upper-boundminimization (BSUM) method.



Sneak-peek on the results (toy data)
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Sneak-peek on the results (toy data)
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Sneak-peek on the results (real data)
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RNA-Seq Cancer Genome Atlas Research Network dataset:



Reproducibility
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The code for the experiments can be found at
https://github.com/dppalomar/spectralGraphTopology
https://cran.r-project.org/web/packages/
spectralGraphTopology/

https://github.com/dppalomar/spectralGraphTopology
https://cran.r-project.org/web/packages/spectralGraphTopology/
https://cran.r-project.org/web/packages/spectralGraphTopology/

