
1 Introduction

The EU Statistics on Income and Living Conditions (EU-SILC), launched 2004, repre-
sents a European standardized survey to generate comparative measures of poverty and
social exclusion among the EU Member States. The survey is conducted annually in
each country with a rotating panel design of 4 waves (see Verma and Betti, 2006). In
combination with a harmonized survey a set of common indicators, the so called Laeken
indicators, was adopted for the countries of the EU (see Atkinson et al., 2002).
Due to sampling design and sample size the EU-SILC delivers qualitatively high well-
being indicators at national or NUTS1 level, but usually lacks the capability to do the
same for regional indicators, on for example NUTS2 or NUTS3 level. Due to the need of
regional indicators for policy makers many methods have already been developed that
aim to calculate statistical significant indicators on lower NUTS levels.(Betti et al., 2012;
Qinghua and Peter, 2009) Many of these methods are based on models for small area
estimation, pooling the data for consecutive years or applying a jack knife procedure
for consecutive years and taking the mean over the jackknife replicates. for variance
estimation. Others also use administrative data to impute the variable of interest, given
a specialized, model onto a large data set, like the population census. Especially the last
was has the downside of being very country specific and the risk of delivering estimates
with high variance. Furthermore the use of administrative data also brings with it the
problem of timeliness of the information in the administrative data.

In this work we present a method for estimating statistically significant estimates on
lower NUTS levels using multiple years of EU-SILC in combination with bootstrapping
techniques. In contrast to jack knife replicates, the bootstrap replicates yield consistent
estimates for variance even for non-smooth estimators like the median. Due to the
nature of our method it can easily be applied to EU-SILC data of any county given the
constraint that EU-SILC data for at least 3 consecutive years is available. Furthermore
the households in EU-SILC must be linked over the years through a household ID to
ensure the applicability of our method.

2 Methodology

In the following we present the used methodology that is applied on multiple consecutive
years of EU-SILC data for one country. The methodology contains the following steps,
in this order

1. Draw B bootstrap replicates from EU-SILC data for each year yt, t = 1, . . . , ny
separately. Since EU-SILC has a rotating panel design the bootstrap replicate of
a household is carried forward through the years. That is, the bootstrap replicate
of a household in the follow-up years is set equal to the bootstrap replicate of the
same household when it first enters EU-SILC.

2. Multiply each set of bootstrap replicates by the sampling weights to obtain uncali-
brated bootstrap weights and calibrate each of the uncalibrated bootstrap weights
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using iterative proportional fitting.

3. Estimate the point estimate of interest θ, for each year and each calibrated boot-
strap weight to obtain θ̃(i,yt), t = 1, . . . , ny, i = 1, . . . , B. For fixed yt apply a
filter with equal weights for each i on θ̃(i,y

∗), y∗ ∈ {yt−1, yt, yt+1} , to obtain θ̃(i,yt).
Estimate the variance of θ using the distribution of θ̃(i,yt).

2.1 Bootstrapping

Bootstrapping has long been around and used widely to estimate confidence intervals and
standard errors of point estimates.(Efron, 1979) Given a random sample (X1, . . . , Xn)
drawn from an unknown distribution F the distribution of a point estimate θ(X1, . . . , Xn;F )
can in many cases not be determined analytically. However when using bootstrapping
one can simulate the distribution of θ.

Let s(.) be a bootstrap sample, e.g. drawing n observations with replacement from
the sample (X1, . . . , Xn), then one can estimate the standard deviation of θ using B
bootstrap samples through

sd(θ) =

√√√√ 1

B − 1

B∑
i=1

(θ(si)− θ)2 ,

with θ := 1
B

B∑
i=1

θ(si) as the sample mean over all bootstrap samples.

In context of sample surveys with sampling weights one can use bootstrapping to
calculate so called bootstrap weights. These are computed via the bootstrap samples
si, i = 1, . . . , B, where for each si every unit of the original sample can appear 0- to
m-times. With f ij as the frequency of occurrence of observation j in bootstrap sample

si the uncalibrated bootstrap weights b̃ij are defined as:

b̃ij = f ijwj ,

with wj as the calibrated sampling weight of the original sample. Using iterative
proportional fitting procedures one can recalibrate the bootstrap weights b̃.j , j = 1, . . . , B

to get the adapted or calibrated bootstrap weights bij , j = 1, . . . , B.

2.1.1 Rescaled Bootstrap

Since EU-SILC is a stratified sample without replacement drawn from a finite popula-
tion the naive bootstrap procedure, as described above, does not take into account the
heterogeneous inclusion probabilities of each sample unit. Thus it will not yield satisfac-
tory results. Therefore we will use the so called rescaled bootstrap procedure introduced
and investigated by (Rao and Wu, 1988). The bootstrap samples are selected without
replacement and do incorporate the stratification as well as clustering on multiple stages
(see (Chipperfield and Preston, 2007),(Preston, 2009)).
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For simplistic reasons we will only describe the rescaled bootstrap procedure for a two
stage stratified sampling design. For more details on a general formulation please see
(Preston, 2009).

Sampling design Consider the finite population U which is divided intoH non-overlapping
strata

⋃
h=1,...,H

Uh = U , of which each strata h contains of Nh clusters. For each strata

h, Chc, c = 1, . . . , nh clusters are drawn, containing Nhc households. Furthermore in
each cluster Chc of each strata h simple random sampling is performed to select a set of
households Yhcj , j = 1, . . . , nhc.

Bootstrap procedure In contrast to the naive bootstrap procedure where for a stage,
containing n sampling units, the bootstrap replicate is obtained by drawing n sampling
units with replacement, for the rescaled bootstrap procedure n∗ = bn2 c sampling units
are drawn without replacement. (Chipperfield and Preston, 2007) have shown that the
choice of either bn2 c or dn2 e is optimal for bootstrap samples without replacement, al-
though bn2 c has the desirable property that the resulting uncalibrated bootstrap weights
will never be negative.

At the first stage the i-th bootstrap replicate, f i,1hc , for each cluster Chc,c = 1, . . . , nh,
belonging to strata h, is defined by

f i,1hc =1− λh + λh
nh
n∗h
δhc ∀c ∈ {1, . . . , nh}

with

n∗h =
⌊nh

2

⌋
λh =

√
n∗h(1− nh

Nh
)

nh − n∗h
,

where δhc = 1 if cluster c is selected in the sub-sample of size n∗h and 0 otherwise.

The i-th bootstrap replicate at the second stage, f i,2hcj , for each household Yhcj , j =
1, . . . , nhc, belonging to cluster c in strata h is defined by

f i,2hcj =f i,1hc − λhc
√
nh
n∗h
δhc

[
nhc
n∗hc

δhcj − 1

]
∀c ∈ {1, . . . , nh}
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with

n∗hc =bnhc
2
c

λhc =

√
n∗hcNh(1− nhc

Nhc
)

nhc − n∗hc
,

where δhcj = 1 if household j is selected in the sub sample of size n∗hc and 0 otherwise.

Single PSUs When dealing with multistage sampling designs the issue of single PSUs,
e.g. a single response unit is present at a stage or in a strata, can occur. When applying
bootstrapping procedures these single PSUs can lead to a variety of issues. For the
methodology proposed in this work we combined single PSUs at each stage with the
next smallest strata or cluster, before applying the bootstrap procedure.

Taking bootstrap replicates forward The bootstrap procedure above is applied on the
EU-SILC data for each year yt, t = 1, . . . , ny separately. Since EU-SILC is a yearly

survey with rotating penal design the i-th bootstrap replicate at the second stage, f i,2hcj ,
for a household Yhcj is taken forward until the household Yhcj drops out of the sample.
That is, for the household Yhcj , which enters EU-SILC at year y1 and drops out at year
yt̃, the bootstrap replicates for the years y2, . . . , yt̃ are set to the bootstrap replicate of
the year y1.

Split households Due to the rotating penal design so called split households can oc-
cur. For a household participating in the EU-SILC survey it is possible that one or more
residents move to a new so called split household, which is followed up on in the next
wave. To take this dynamic into account we extended the procedure of taking forward
the bootstrap replicate of a household for consecutive waves of EU-SILC by taking for-
ward the bootstrap replicate to the split household. That means, that also any new
individuals in the split household will inherit this bootstrap replicate.

The following Tables illustrate the mechanism for taking bootstrap replicates forward es
well as dealing with split households. Consider a 4 member household that enters EU-
SILC in the year 2013, as show in Table 1. For this household the bootstrap replicate
was set to 2.

Table 2 shows the household members from Table 1 including a split household for
the year 2014. We see that the household member with PID=4750003 has moved to a
new household, thus creating the split household, HID=47501. Furthermore the boot-
strap procedure, since it is applied on each year separately, did not select households
HID=47500 or HID=47501 for the year 2014, e.g BOOTSTRAP.REP=0. Following
our rule for taking bootstrap replicates forward and dealing with split households the
bootstrap replicates for the year 2014 will be set equal to the bootstrap replicates for
2013. This is also true for the split household since it was created through the household
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Table 1: Household with 4 members in year 2013.

YEAR PID HID BOOTSTRAP.REP

2013 4750001 47500 2
2013 4750002 47500 2
2013 4750003 47500 2
2013 4750004 47500 2

Table 2: Original household with 3 members and 1 split household in year 2014.

YEAR PID HID BOOTSTRAP.REP

2014 4750001 47500 0
2014 4750002 47500 0
2014 4750004 47500 0
2014 4750003 47501 0
2014 4750101 47501 0

member PID=4750003, which moved out of household HID=47500 between 2013 and
2014. Every Household member in of HID=47501 will therefore inherit the bootstrap
replicate which household member PID=4750003 had in the year 2013. Table 3 shows
the bootstrap replicates after for 2014 after they have been taken forward from 2013.

Taking bootstrap replicates forward as well as considering split households ensures
that bootstrap replicates are more comparable in structure with the actual design of
EU-SILC.

Uncalibrated bootstrap weights Using the i-th bootstrap replicates at the second stage
one can calculate the i-th uncalibrated bootstrap weights bihcj for each household Yhcj
in cluster c contained in strata h by

Table 3: Bootstrap replicates taken forward to the next year as well as to the split
household.

YEAR PID HID BOOTSTRAP.REP

2014 4750001 47500 2
2014 4750002 47500 2
2014 4750004 47500 2
2014 4750003 47501 2
2014 4750101 47501 2
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b̃ihcj =f i,2hcjwhcj ,

where whcj corresponds to the original household weight contained in the sample.

For ease of readability we will drop the subindices regarding strata h and cluster c for
the following sections, meaning that the j-th household in cluster c contained in strata
h, Yhcj , will now be denoted as the j-th household, Yj , where j is the position of the
household in the data. In accordance to this the i-th uncalibrated bootstrap replicates
for household j are thus denoted as b̃ij and the original household weight as wj .

2.2 Iterative proportional fitting (IPF)

The uncalibrated bootstrap weights b̃ij computed through the rescaled bootstrap proce-
dure yields population statistics that differ from the known population margins of spec-
ified sociodemographic variables for which the base weights wj have been calibrated. To
adjust for this the bootstrap weights b̃ij can be recalibrated using iterative proportional
fitting as described in (Meraner et al., 2016).

Let the original weight wj be calibrated for v1, . . . , vu sociodemographic variables
which can take on V1, . . . , Vu values each and Nvi be the population margins of the i-th
sociodemographic variables. The iterative proportional fitting procedure for the weights
b̃ij is made up of 5 Steps. Starting with k = 0 the 5 Steps are repeated and k is raised
by 1 if the constrains are not satisfied after step 5.

2.2.1 Steps 1-3

The uncalibrated bootstrap weights b̃ij for the j-th observation is iteratively multiplied
by a factor so that the projected distribution of the population matches the respective
calibration specification Nvi , i = 1, . . . , u. For each i ∈ {1, . . . , u} the calibrated weights
against N(vi,y) are computed as

b̃
(u+2)k+i
j = b̃

(u+2)k+i−1
j

Nvi∑
l

b̃
(u+2)k
l

,

where the summation in the denominator expands over all observations which have the

same value as observation j for the sociodemographic variable vi. If any weights b̃
(u+2)k+i
j

fall outside the range
[wj

4 ; 4wj

]
they will be recoded to the nearest of the two boundaries.

The choice of the boundaries results from expert-based opinions and restricts the variance
of which has a positive effect on the sampling error. This procedure represents a common
form of weight trimming where very large or small weights are trimmed in order to reduce
variance in exchange for a possible increase in bias (Potter, 1990, 1993).
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2.2.2 Step 4

Since the sociodemographic variables v1, . . . , vu can include personal as well as household
specific variables, the weights b̃5k+u

j resulting from the iterative multiplication can be
unequal for members of the same household. This can lead to inconsistencies between
results projected with household and person weights. To avoid such inconsistencies each
household member is assigned the mean of the household weights. That is for each
person j in household p with Hp household members, the weights are defined by

b̃
(u+2)k+u+1
j =

Hp∑
l=1

b̃
(u+2)k+u
p(l)

Hp

This can result in loosing the population structure performed in steps 1-3.

2.2.3 Step 5

To get weights that do conform with the population margins defined by v1, . . . , vu the
weights b5k+u+1

j are again updated according to the uncertainty parameter ph. The
parameters ph represent the allowed deviation from the population margins using the

weights b̃
(u+2)k+u+1
j compared to Nvi , i = 1, . . . , u where vi corresponds to a household

variable.
The updated weights are computed as

b̃
(u+2)k+u+2
j =

b̃
(u+2)k+u+1
j

Nvi∑
l

b̃
(u+2)k+u+1
l

if
∑
l

b̃
(u+2)k+u+1
l /∈ ((1− ph)Nvi , (1 + ph)Nvi)

b̃
(u+2)k+u+1
j otherwise

with the summation in the denominator ranging over all households l which take on the
same values for vi as observation j. As described in the previous subsection the new
weight are recoded if they exceed the interval [

wj

4 ; 4wj ] and set to the upper or lower

bound, depending of b̃
(u+2)k+u+2
j falls below or above the interval respectively.

2.2.4 Convergence

After these 5 steps we check if the population margins defined by v1, . . . , vu and calcu-

lated with b
(u+2)k+u+2
j do not deviate too much from Nvi , i = 1, . . . , u. That is∑

l

b̃
(u+2)k+u+1
l −Nvi

Nvi

<

{
0.05 if vi is a household variable

0.01 if vi is a personal variable

holds true for all i,i = 1, . . . , u, where the sum in the denominator expands over all
observations which have the same value for the variable vi. If this inequality holds true
the algorithm reaches convergence, otherwise k is raised by 1 and Steps 1-5 are repeated.

The above described calibration procedure is applied on each year yt of EU-SILC
separately, t = 1, . . . ny, thus resulting in so called calibrated bootstrap sample weights

b
(i,yt)
j , i = 1, . . . , B for each year y and each household j.
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2.3 Variance estimation

Applying the previously described algorithms to EU-SILC data for multiple consecutive

years yt, t = 1, . . . ny, yields calibrated bootstrap sample weights b
(i,yt)
j for each year yt.

Using the calibrated bootstrap sample weights it is straight forward to compute the stan-
dard error of a point estimate θ(Xyt ,wyt) for year yt with Xyt = (Xyt

1 , . . . , X
yt
n ) as the

vector of observations for the variable of interest in the survey and wyt = (wyt
1 , . . . , w

yt
n

as the corresponding weight vector, with

sd(θ) =

√√√√ 1

B − 1

B∑
i=1

(θ(i,yt) − θ(.,yt))2

with

θ(.,yt) =
1

B

B∑
i=1

θ(i,yt) ,

where θ(i,yt) := θ(Xyt ,b(i,yt)) is the estimate of θ in the year yt using the i-th vector of
calibrated bootstrap weights.

As already mentioned the standard error estimation for indicators in EU-SILC yields
high quality results for NUTS1 or country level. When estimation indicators on regional
or other sub-aggregate levels one is confronted with point estimates yielding high vari-
ance.

To overcome this issue we propose to estimate θ for 3, consecutive years using the cal-
ibrated bootstrap weights, thus calculating {θ(i,yt−1), θ(i,yt), θ(i,yt+1)}, i = 1, . . . , B. For
fixed i one can apply a filter with equal filter weights on the time series {θ(i,yt−1), θ(i,yt), θ(i,yt+1)}
to create θ̃(i,yt)

θ̃(i,yt) =
1

3

[
θ(i,yt−1) + θ(i,yt) + θ(i,yt+1)

]
.

Doing this for all i, i = 1, . . . , B, yields θ̃(i,yt), i = 1, . . . , B. The variance of θ can
then be estimated with

sd(θ) =

√√√√ 1

B − 1

B∑
i=1

(θ̃(i,yt) − θ̃(.,yt))2

with

θ̃(.,yt) =
1

B

B∑
i=1

θ̃(i,yt) .
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Applying the filter over the time series of estimated θ(i,yt) leads to a reduction of
variance for θ since the filter reduces the noise in {θ(i,yt−1), θ(i,yt), θ(i,yt+1)} and thus
leading to a more narrow distribution for θ̃(i,yt).

It should also be noted that estimating indicators from a survey with rotating panel
design is in general not straight forward because of the high correlation between consecu-
tive years. However with our approach to use bootstrap weights, which are independent
from each other, we can bypass the cumbersome calculation of various correlations, and
apply them directly to estimate the standard error.
(Martin et al., 2013) showed that using the proposed method on EU-SILC data for Aus-
tria the reduction in resulting standard errors corresponds in a theoretical increase in
sample size by about 25%. Furthermore this study compared this method to the use
of small area estimation techniques and on average the use of bootstrap sample weights
yielded more stable results.

2.3.1 Improvement of 3 year mean

In the following we will show the improvement of precision of using the mean over several
years on the UDB data of EU-SILC for Spain and Austria. We created 250 bootstrap
replicates and calibrated for Spain each of the replicates for the variable DB040, house-
hold size and gender by age group. For Austria we calibrated by DB040 and RB090.
After that the weighted ratio for AROPE was estimated, including it’s standard error
for each DB040 by DB100 for each year as well as using 3 consecutive years.
Figure 1 shows for the results of this calculation for the year 2015 and the mean over
years 2014, 2015 and 2016. The identity line corresponds to the estimates using a single
year as basis for standard error estimation and the points show the results for using
the years 2014 to 2016. The dotted line represents the 25% improvement that is to be
expected for using the mean over 3 consecutive years, as shown by (Martin et al., 2013).
It is clear to see that using the UDB the improvement of the the point estimate for
standard error by about 25%, when using 3 consecutive years, holds true as well.

To conclude the above presented methodology represents a reasonable approach for
lowering the variance of point estimates if the estimates stay relatively stable over time.
However for point estimates which change trend over time or exhibit seasonal or cyclical
behavior this methodology can not be recommended. At least not with applying a filter
with equal filter weights.

2.4 R-Package vardpoor

For the work-package on NetSilc 2 a different methodology was proposed for estimat-
ing standard errors for EU-SILC by (Berger et al., 2017) and even implemented this
methodology in the R-Package vardpoor, see (Breidaks et al., 2017). This approach uses
the so called ultimate cluster approximation, where the variance between the sampling
units at the first sampling stage is used as approximation for the total sampling vari-
ance (see (Särndal et al., 1992)). Using this approximation the standard error estimates
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Figure 1: Results for setup 1 regarding the sensitivity analysis on standard error
estimations.
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Table 4: Standard error estimates with ultimate cluster approximation and
bootstrapping.

DB040 vardpoor surveysd 250 surveysd 1000

ES11 1.723206 1.869290 1.829328
ES12 2.032826 2.333783 2.224175
ES13 3.219196 3.087267 3.036866
ES21 1.725623 1.765524 1.895363
ES22 2.497444 2.695355 2.717238

ES23 2.684678 2.851551 2.795135
ES24 2.397791 2.441098 2.604816
ES30 1.311531 1.582262 1.651133
ES41 1.762461 1.757140 1.795810
ES42 2.655581 2.865607 2.914314

ES43 2.565243 2.728938 2.793706
ES51 1.057729 1.241227 1.202477
ES52 2.153203 2.540085 2.375432
ES53 2.726446 3.107017 2.965827
ES61 1.517506 1.880508 1.971840

ES62 2.610391 2.923325 2.994599
ES63 6.556073 6.841691 6.753498
ES64 4.698478 6.735764 6.818549
ES70 3.718441 3.888209 3.822487

are analytically calculated and if needed approximated through linearization ((Deville,
1999)).
To show that our proposed method is in accord to the methodology proposed in NetSilc
2 we applied both methods on UDB data of EU-SILC for Spain to estimate standard
errors for the weighted ratio of AROPE on NUTS2-Level for the year 2016.
Table 4 shows the estimated standard errors for both methodologies. Our proposed
methodology was run with 250 and 1000 bootstrap sample weights, columns surveysd 250
and surveysd 1000, respectively. We see that for almost all standard errors the results
for our methodology are slightly higher. This is to be expected since we do incorporate
the complete sampling design in our calculations.

2.5 Number of bootstrap replicates

When using bootstrap replicates with survey data it is not always clear how many
bootstrap replicates are needed to get stable results. Obviously it is more beneficial to
use too many bootstrap replicates instead of too little. Nevertheless using a very large
number of bootstrap replicates on large data sets can heavily increase memory usage as
well as run-time for the computation. To get a bit of insight on how many bootstrap
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replicates suffice for reasonable results we conducted a sensitivity analysis.

2.5.1 Setup

For the sensitivity analysis we used the UDB data of EU-SILC for Spain for the years
2008 till 2016. We created 1000 bootstrap replicates and calibrated each of the replicates
for the variable DB040, household size and gender by age group. The estimate of interest
was the weighted Ratio in % of AROPE for each year at a national level as well as
the grouping DB040 by DB100. The sensitivity analysis was then conducted with two
different approaches

1. Starting with 50 bootstrap sample weight the standard error, 0.025 and 0.975
quantile were calculated. After that the next bootstrap sample weight was added
and standard error, 0.025 and 0.975 quantile were calculated again. This was done
until all 1000 bootstrap sample weights were used for the calculation.

2. We sampled i bootstrap sample weight from the original set of 1000 bootstrap
sample weight and calculated standard error, 0.025 and 0.975 quantile of the point
estimate. i was chosen to be in I := {i : i ∈ 50, 100, 150, . . . , 700, 750, 800} and for
each k this procedure was done 100 times over.

Calculating the estimates for year, DB040 and DB100 can in some cases yield very
little observations in the data. Since we expect the behavior of estimates for stan-
dard error, 0.025 and 0.975 quantile the be depending on the number of observations
used we divided the results into groups. The groups were G := {g : g ∈ {[0 −
50), [50, 100), [100, 250), [250, 500), [500, 1000), 1000+}}, displaying the range for number
of observations used from the data for each year and each year by DB040 and DB100.

2.5.2 Results Setup 1

Let σ̂
(i)
(k,g) be the k-th estimate for standard error using i bootstrap sample weights in

group g which contains ng estimates, g ∈ G. We first calculated for each g the absolute

change, σ̃
(i)
(k,g), for the point estimate

σ̃
(i)
(k,g) = σ̂

(i+1)
(k,g) − σ̂

(i)
(k,g) i = 1, . . . , 999.

Afterwards for each group g and number of bootstrap sample weights i we estimated

the minimum, maximum and median over σ̃
(i)
(k,g). In Figure 2 this minimum, maximum

and median is displayed for each group and number of bootstrap sample weights used.
The y axis was, for better readability, cut of below and above -1 and 1, respectively.
The same calculations were done for the 0.025 and 0.975 quantile and the results are
displayed in Figure 3 and Figure 4.

Comparing Figures 2 to 4 we conclude that for estimating the standard error a value if
250 bootstrap sample weights does suffice for stable estimates through all group g. When
it comes to the estimates for the 0.025 and 0.975 quantile the results change drastically.
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Figure 2: Results for setup 1 regarding the sensitivity analysis on standard error
estimations.
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Figure 3: Results for setup 1 regarding the sensitivity analysis on estimations for the
0.025 quantile.
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Figure 4: Results for setup 1 regarding the sensitivity analysis on estimations for the
0.975 quantile.
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Regardless of the number of observations used for the estimation we suggest to never use
less then 500 bootstrap sample weights. But even this can be insufficient when looking
at the group (100, 250] in our analysis. Ideally one should at least take a 1000 bootstrap
sample weights for those kind of estimates.

2.5.3 Results Setup 2

For the second setup consider σ̂
(i,j)
(k,g) as j-th result, j = 1, . . . , 100, for the k-th estimate,

using i bootstrap sample weights, i ∈ I in group g, g ∈ G. We then calculated for fixed

i, k and g the range over all σ̂
(i,j)
(k,g), R

(i)
(k,g)

R
(i)
(k,g) = max(σ̂

(i,j)
(k,g))−min(σ̂

(i,j)
(k,g)) ,

From the sets of R
(i)
(k,g) we then calculated for each g and each i the median, 0.01 and

0.99 quantile. Figure 5 displays the results for median, 0.01 and 0.99 quantile for each
g over i. We followed the same procedure for the estimates regarding 0.025 and 0.975
quantile and the corresponding results are displayed in Figure 6 and 7.

Looking at Figure 5 we conclude that for larger groups, e.g above 500 observations,
a number of 250 bootstrap sample weights does suffice for getting relatively stable esti-
mates, that is, the variance of the estimator itself is not too large. For groups regarding
smaller number of observations it would be beneficial to not use less then 500 observa-
tions.
Similar to the results from setup 1, the results for the 0.025 and 0.975 quantile, shown in
Figure 6 and 7, show a very different picture. Even for larger groups one should at least
use 500 bootstrap sample weights, although even that might not be enough. As stated
for setup one for those kind of estimates it is necessary to use at least 1000 bootstrap
sample weights.
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Figure 5: Results for setup 2 regarding the sensitivity analysis on standard error
estimations.
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Figure 6: Results for setup 2 regarding the sensitivity analysis on estimations for the
0.025 quantile.
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Figure 7: Results for setup 2 regarding the sensitivity analysis on estimations for the
0.975 quantile.
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