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It is useful to have a set of test data where the results have been worked
out in detail, both to illuminate the computations and to form a test case for
software programs. The data sets below are quite simple, but have proven
useful in this regard.

1 Test data 1

In this data set x is a 0/1 treatment covariate, with n = 6 subjects. There
is one tied death time, one time with a death and a censoring, one with only
a death, and one with only a censoring. (This is as small as a data set can
be and still cover the four cases.) Let r = exp(β) be the risk score for a
subject with x = 1. Table 1 shows the data set along with the mean and
increment to the hazard at each point.

1.1 Breslow estimates

The loglikelihood has a term for each event; each term is the log of the ratio
of the score for the subject who had an event over the sum of scores for

x̄(t) dΛ̂0(t)
Time Status x Breslow Efron Breslow Efron

1 1 1 r/(r + 1) r/(r + 1) 1/(3r + 3) 1/(3r + 3)
1 0 1
6 1 1 r/(r + 3) r/(r + 3) 2/(r + 3) 1/(r + 3)
6 1 0 r/(r + 5) 2/(r + 5)
8 0 0
9 1 0 0 0 1 1

Table 1: Test data 1
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those who did not.

LL = {β − log(3r + 3)}+ {β − log(r + 3)}+ {0− log(r + 3)}+ {0− 0}
= 2β − log(3r + 3)− 2 log(r + 3).

U =
(

1− r

r + 1

)
+
(

1− r

r + 3

)
+
(

0− r

r + 3

)
+ (0− 0)

=
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(r + 1)(r + 3)

.

I =

{
r
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−
(

r

r + 1

)2
}

+ 2
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r

r + 3
−
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r

r + 3

)2
}

+ (0− 0)

=
r

(r + 1)2
+

6r

(r + 3)2
.

The actual solution corresponds to U(β) = 0, which from the quadratic
formula is r = (1/2)(3 +

√
33) ≈ 4.372281, or β̂ = log(r) ≈ 1.475285. Then

LL(0) = −4.564348 LL(β̂) = −3.824750
U(0) = 1 U(β̂) = 0
I(0) = 5/8 = 0.625 I(β̂) = 0.634168 .

Newton–Raphson iteration has increments of −I−1U . Starting with the
usual initial estimate of β = 0, the N–R iterates are 0, 8/5, 1.4727235,
1.4752838, 1.4752849, . . . . S considers the algorithm to have converged
after three iterations, SAS after four (using the default convergence criteria
in each package).

The martingale residuals are a simple function of the cumulative hazard,
Mi = δi − rΛ̂(ti).

Subject Λ0 M̂(0) M̂(β̂)
1 1/(3r + 3) 5/6 .728714
2 1/(3r + 3) –1/6 –.271286
3 1/(3r + 3) + 2/(r + 3) 1/3 –.457427
4 1/(3r + 3) + 2/(r + 3) 1/3 .666667
5 1/(3r + 3) + 2/(r + 3) –2/3 –.333333
6 1/(3r + 3) + 2/(r + 3) + 1 –2/3 –.333333

The score residual Li can be calculated from the entries in Table 1. For
subject number 3, for instance, we have

L3 =
∫ 6

0
{1− x̄(t)}dM̂3(t)
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=
(

1− r

r + 1

)
r

3r + 3
+
(

1− r

r + 3

)(
1− 2r

r + 3

)
.

Let a = (r + 1)(3r + 3) and b = (r + 3)2; then the residuals are as follows.

Subject L L(0) L(β̂)
1 (2r + 3)/a 5/12 .135643
2 −r/a –1/12 –.050497
3 −r/a + 3(3− r)/b 7/24 –.126244
4 r/a− r(r + 1)/b –1/24 –.381681
5 r/a + 2r/b 5/24 .211389
6 r/a + 2r/b 5/24 .211389

The Schoenfeld residuals are defined at the three unique death times, and
have values of 1− r/(r + 1) = 1/(r + 1), {1− r/(r + 3)}+ {0− r/(r + 3)} =
(3− r)/(3 + r), and 0 at times 1, 6, and 9, respectively. For convenience in
plotting and use, however, the programs return one residual for each event
rather than one per unique event time. The two values returned for time 6
are 3/(r + 3) and −r/(r + 3).

The Nelson–Aalen estimate of the hazard is closely related to the Bres-
low approximation for ties. The baseline hazard is shown as the column
Λ0 above. The hazard estimate for a subject with covariate xi is Λi(t) =
exp(xiβ)Λ0(t) and the survival estimate is Si(t) = exp(−Λi(t)).

The variance of the cumulative hazard is the sum of two terms. Term
1 is a natural extension of the Nelson–Aalen estimator to the case where
there are weights. It is a running sum, with an increment at each death
time of dN(t)/(

∑
Yi(t)ri(t))2. For a subject with covariate xi this term is

multiplied by [exp(xiβ)]2.
The second term is dI−1d′, where I is the variance–covariance matrix

of the Cox model, and d is a vector. The second term accounts for the fact
that the weights themselves have a variance; d is the derivative of S(t) with
respect to β and can be formally written as

exp(xβ)
∫ t

0
(x̄(s)− xi)dΛ̂0(s) .

This can be recognized as −1 times the score residual process for a subject
with xi as covariates and no events; it measures leverage of a particular
observation on the estimate of β. It is intuitive that a small score residual
— an obs with such covariates has little influence on β — results in a small
added variance; that is, β has little influence on the estimated survival.
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Time Term 1
1 1/(3r + 3)2

6 1/(3r + 3)2 + 2/(r + 3)2

9 1/(3r + 3)2 + 2/(r + 3)2 + 1/12

Time d

1 (r/(r + 1)) ∗ 1/(3r + 3)
6 (r/(r + 1)) ∗ 1/(3r + 3) + (r/(r + 3)) ∗ 2/(r + 3)
9 (r/(r + 1)) ∗ 1/(3r + 3) + (r/(r + 3)) ∗ 2/(r + 3) + 0 ∗ 1

For β = 0, x = 0:

Time Variance
1 1/36 + 1.6 ∗ (1/12)2 = 7/180
6 (1/36 + 2/16) + 1.6 ∗ (1/12 + 2/16)2 = 2/9
9 (1/36 + 2/16 + 1) + 1.6 ∗ (1/12 + 2/16 + 0)2 = 11/9

For β = 1.4752849, x = 0

Time Variance
1 0.0038498 + .004021 = 0.007871
2 0.040648 + .0704631 = 0.111111
4 1.040648 + .0704631 = 1.111111

1.2 Efron approximation

The Efron approximation [?] differs from the Breslow only at day 6, where
two deaths occur. A useful way to think about the approximation is this:
assume that if the data had been measured with higher accuracy that the
deaths would not have been tied, that is two cases died on day 6 but they
did not perish at the same instant on that day. There are thus two separate
events on day 6. Four subjects were alive and at risk for the first of the
events. Three subjects were at risk for the second event, either subjects 3,
5, and 6 or subjects 2, 5, and 6, but we do not know which. In some sense
then, subjects 3 and 4 each have “.5” probability of being at risk for the
second event at time 2 + ε. In the computation, we treat the two deaths
as two separate times (two terms in the loglik), with subjects 3 and 4 each
having a case weight of 1/2 for the second event. The mean covariate for
the second event is then

1 ∗ r/2 + 0 ∗ 1/2 + 0 ∗ 1 + 0 ∗ 1
r/2 + 1/2 + 1 + 1

=
r

r + 5
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and the main quantities are

LL = {β − log(3r + 3)}+ {β − log(r + 3)}+ {0− log(r/2 + 5/2)}+ {0− 0}
= 2β − log(3r + 3)− log(r + 3)− log(r/2 + 5/2)
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.

The solution corresponds to the one positive root of U(β) = 0, which can
be written as φ = arccos{(45/23)

√
3/23}, r = 2

√
23/3 cos(φ/3) ≈ 5.348721,

or β̂ = log(r) ≈ 1.676858.
Then

LL(0) = −4.276666 LL(β̂) = −3.358979
U(0) = 52/48 U(β̂) = 0
I(0) = 83/144 I(β̂) = 0.652077.

The cumulative hazard now has a jump of size 1/(r + 3) + 2/(r + 5) at
time 6. Efron [?] did not discuss estimation of the cumulative hazard, but it
follows directly from the same argument as that used for the loglikelihood so
we refer to it as the “Efron” estimate of the hazard. In S this hazard is the
default whenever the Efron approximation for ties is used; the estimate is
not available in SAS. For simple survival curves (i.e., the no-covariate case),
the estimate is explored by Fleming and Harrington [?] as an alternative to
the Kaplan–Meier.

The variance formula for the baseline hazard function is extended in the
same way, and is the sum of (hazard increment)2, treating a tied death as
d separate hazard increments. In term 1 of the variance, the increment at
time 6 is now 1/(r + 3)2 + 4/(r + 5)2 rather than 2/(r + 3)2. The increment
to d at time 6 is (r/(r+3))∗1/(r+3)+(r/(r+5))∗2/(r+5). (Numerically,
the result of this computation is intermediate between the Nelson–Aalen
variance and the Greenwood variance used in the Kaplan–Meier, which is
an increment of

dN(t)
[
∑

Yi(t)ri(t)][
∑

Yi(t)ri(t)−
∑

dNi(t)Yi(t)ri(t)]
.

5



The denominator for the Greenwood formula is the sum over those at risk,
times that sum without the deaths. At time 6 this latter is 2/[(r + 3)(3)].)

For β = 0, x = 0, let v = I−1 = 144/83.

Time Variance
1 1/36

+ v(1/12)2 = 119/2988
6 (1/36 + 1/16 + 4/25)

+ v(1/12 + 1/16 + 1/18)2 = 1996/6225
9 (1/36 + 1/16 + 4/25 + 1)

+ v(1/12 + 1/16 + 1/18 + 0)2 = 8221/6225

For β = 1.676857, x = 0.

Time Variance
1 0.00275667 + .00319386 = 0.0059505
2 0.05445330 + .0796212 = 0.134075
4 1.05445330 + .0796212 = 1.134075

Given the cumulative hazard, the martingale and score residuals follow
directly using similar computations. Subject 3, for instance, experiences a
total hazard of 1/(3r + 3) at the first death time, 1/(r + 3) at the “first”
death on day 6, and (1/2) ∗ 2/(r + 5) at the “second” death on day 6 —
notice the case weight of 1/2 on the last term. Subjects 5 and 6 experience
the full hazard of 1/(r+3)+2/(r+5) on day 6. The values of the martingale
residuals are as follows.

Subject M̂(0) M̂(β̂)
1 5/6 .719171
2 –1/6 –.280829
3 5/12 –.438341
4 5/12 .731087
5 –3/4 –.365543
6 –3/4 –.365543

Let a = r + 1, b = r + 3, and c = r + 5; then the score residuals are

Subject Score L(0) L(β̂)
1 2b/3a2 5/12 .113278
2 −r/3a2 -1/12 –.044234
3 1/3a2 + a/2b2 + b/2c2 55/144 –.102920
4 r(1/3a2 − a/2b2 − b/2c2 –5/144 –.407840
5 2r(177+282r+182r2+50r3+5r4)

3a2b2c2
29/144 .220858

6 same 29/144 .220858
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For subject 3, the score residual was computed as(
1− r

r+1

) (
0− 1

3r+3

)
+
(
1− r

r+3

) (
1
2 −

1
r+3

)
+
(
1− r

r+5

) (
1
2 −

1
r+5

)
;

the single death is counted as 1/2 event for each of the two day 6 events.
Another equivalent approach is to actually form a second data set in which
subjects 3 and 4 are each represented by two observations, one at time 6 and
the other at time 6+ ε, each with a case weight of 1/2. Then a computation
using the Breslow approximation will give this score residual as the weighted
sum of the score residuals for the two psuedo-observations.

The Schoenfeld residuals for the first and last events are identical to the
Breslow estimates, that is, 1/(r + 1) and 0, respectively. The residuals for
time 6 are 1 − c and 0 − c, where c = (1/2){r/(r + 3) + r/(r + 5)}, the
“average” x̄ over the deaths.

It is quite possible to combine the Efron approximation for β̂ along with
the Breslow (or Nelson–Aalen) estimate of Λ̂, and in fact this is the behavior
used in some packages. That is, if the ties=efron option is chosen the
formulas for LL, U , and I are those shown in this section, while the hazard
and residuals all use the formulas of the prior section. Although this is not
perfectly consistent the numerical effect on the residuals is minor, and it
does not appear to affect their utility. S uses the calculations of this section
by default.

The robust variance for a Cox model is defined as D′D where the n× p
dfbeta matrix D is based on the score residuals. Each row of D represents
the infinitesimal jackknife, the derivative of β̂ with respect to a change in
the case weight for subject i. It is fairly each to check this using a direct
derivative, f(wi + ε) − f(wi)/epsilon where f is the vector of coefficients
from a fit of the Cox model with the chosen weight for subject i (wi will
be 1 for most data sets). This shows that the Efron/Breslow chimera is
less accurate than the S code. However, I have not seen any example where
the effect on either D or the robust variance D′D was large enough to have
practical consequences. Still, the numerical analyst in me prefers to avoid
an inferior approximation.

1.3 Exact partial likelihood

At the tied death time the exact partial likelihood will have a single term.
The numerator is a product of the risk scores of the subjects with an event,
and the denominator is a sum of such products, where the sum is over all
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possible choices of two subjects from the four who were at risk at the time.
(If there were 10 tied deaths from a pool of 60 available, the sum would be
over all

(
60
10

)
subsets, a truly formidable computation!) In our case, three

of the four subjects at risk at time 6 have a risk score of exp(0x) = 1 and
one a risk score of r, and the sum has six terms {r, r, r, 1, 1, 1}.

LL = {β − log(3r + 3)}+ {β − log(3r + 3)}+ {0− 0}
= 2{β − log(3r + 3)}.

U =
(

1− r

r + 1

)
+
(

1− r

r + 1

)
+ (0− 0)

=
2

r + 1
.

I =
2r

(r + 1)2
.

The solution U(β) = 0 corresponds to r = ∞, with a loglikelihood that
asymptotes to −2 log(3). The Newton–Raphson iteration has increments of
(r+1)/r, so β̂ = 0, 2, 3.1, 4.2, 5.2, and so on. A solution at β̂ = 15 is hardly
different in likelihood from the true maximum, however, and most programs
will stop iterating shortly after reaching this point. The information matrix,
which measures the curvature of the likelihood function, rapidly goes to zero
as β grows.

Both SAS and S use the Nelson–Aalen estimate of hazard after fitting
an exact model, so the formulae of Table 1 apply. All residuals at β̂ = 0
are thus identical to those for a Breslow approximation. At β̂ = ∞ the
martingale residuals are still well defined. Subjects 1 to 3, those with a
covariate of 1, experience a hazard of r/(3r + 3) = 1/3 at time 1. Subject
3 accumulates a hazard of 1/3 at time 1 and a further hazard of 2 at time
6. The remaining subjects are at an infinitely lower risk during days 1 to 6
and accumulate no hazard then, with subject 6 being credited with 1 unit
of hazard at the last event. The residuals are thus 1 − 1/3 = 2/3, 0 − 1/3,
1− 7/3 = −4/3, 1− 0, 0, and 0, respectively, for the six subjects.

Values for the score and Schoenfeld residuals can be derived similarly as
the limit as r →∞ of the formulae in Section 1.1.
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Number
Time Status x at Risk x̄ dΛ̂
(1,2] 1 1 2 r/(r + 1) 1/(r + 1)
(2,3] 1 0 3 r/(r + 2) 1/(r + 2)
(5,6] 1 0 5 3r/(3r + 2) 1/(3r + 2)
(2,7] 1 1 4 3r/(3r + 1) 1/(3r + 1)
(1,8] 1 0 4 3r/(3r + 1) 1/(3r + 1)
(7,9] 1 1 5 3r/(3r + 2) 2/(3r + 2)
(3,9] 1 1
(4,9] 0 1
(8,14] 0 0 2 0 0
(8,17] 0 0 1 0 0

Table 2: Test data 2

2 Test data 2

This data set also has a single covariate, but in this case a (start, stop] style
of input is employed. Table 2 shows the data sorted by the end time of the
risk intervals. The columns for x̄ and hazard are the values at the event
times; events occur at the end of each interval for which status = 1.

2.1 Breslow approximation

For the Breslow approximation we have

LL = log
(

r

r + 1

)
+ log

(
1

r + 2

)
+ log

(
1

3r + 2

)
+

log
(

r

3r + 1

)
+ log

(
1

3r + 1

)
+ 2 log

(
r

3r + 2

)
= 4β − log(r + 1)− log(r + 3)− 3 log(3r + 2)− 2 log(3r + 1).

U =
(

1− r

r + 1

)
+
(

0− r

r + 2

)
+
(

0− 3r

3r + 2

)
+(

1− 3r

3r + 1

)
+
(

0− 3r

3r + 1

)
+ 2

(
1− 3r

3r + 2

)
= 4− 63s4 + 201s3 + 184s2 + 48s

9s4 + 36s3 + 47s2 + 24s + 4
.

I =
r

(r + 1)2
+

2r

(r + 2)2
+

6r

(3r + 2)2
+

3r

(3r + 1)2
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3r

(3r + 1)2
+

12r

(3r + 2)2
.

The solution is at U(β̂) = 0 or r ≈ .9189477; β̂ = log(r) ≈ −.084529.
Then

LL(0) = −9.392662 LL(β̂) = −9.387015
U(0) = −2/15 U(β̂) = 0
I(0) = 2821/1800 I(β̂) = 1.586935.

The martingale residuals are (status–cumulative hazard) or O−E = δi−∫
Yi(s)ridΛ̂(s). Let λ̂1, . . . , λ̂6 be the six increments to the cumulative hazard

listed in Table 2. Then the cumulative hazards and martingale residuals for
the subjects are as follows.

Subject Λ0 M̂(0) M̂(β̂)
1 rλ̂1 1–30/60 0.521119
2 λ̂2 1–20/60 0.657411
3 λ̂3 1–12/60 0.789777
4 r(λ̂2 + λ̂3 + λ̂4) 1–47/60 0.247388
5 λ̂1 + λ̂2 + λ̂3 + λ̂4 + λ̂5 1–92/60 –0.606293
6 r ∗ (λ̂5 + λ̂6) 1–39/60 0.369025
7 r ∗ (λ̂3 + λ̂4 + λ̂5 + λ̂6) 1–66/60 –0.068766
8 r ∗ (λ̂3 + λ̂4 + λ̂5 + λ̂6) 0–66/60 –1.068766
9 λ̂6 0–24/60 –0.420447
10 λ̂6 0–24/60 –0.420447

The score and Schoenfeld residuals can be laid out in a tabular fashion.
Each entry in the table is the value of {xi − x̄(tj)}dM̂i(tj) for subject i and
event time tj . The row sums of the table are the score residuals for the
subject; the column sums are the Schoenfeld residuals at each event time.
Below is the table for β = log(2) (r = 2). This is a slightly more stringent
test than the table for β = 0, since in this latter case a program could be
missing a factor of r = exp(β) = 1 and give the correct answer. However,
the results are much more compact than those for β̂, since the solutions are
exact fractions.
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Event Time Score

Id 2 3 6 7 8 9 Resid

1 1
9

1
9

2 −3
8 −3

8

3 −21
32 −21

32

4 −1
4 − 1

16
5
49 −165

784

5 2
9

1
8

3
32

6
49 −36

49 − 2417
14112

6 − 2
49

1
8

33
392

7 − 1
16 − 2

49 − 2
49

1
8 − 15

784

8 − 1
16 − 2

49 − 2
49 −1

8 −211
784

9 3
16

3
16

10 3
16

3
16

1
3 −1

2 −3
4

1
7 −6

7
1
2 −95

84

1
r+1

−r
r+2

−3r
r+2

1
3r+1

3r
3r+1

4
3r+2

Both the Schoenfeld and score residuals sum to the score statistic U(β). As
discussed further above, programs will return two Schoenfeld residuals at
time 7, one for each subject who had an event at that time.

2.2 Efron approximation

This example has only one tied death time, so only the term(s) for the event
at time 9 change. The main quantities at that time point are as follows.

Breslow Efron

LL 2 log
(

r
3r+2

)
log

(
r

3r+2

)
+ log

(
r

2r+2

)
U 2

3r+2
1

3r+2 + 1
2r+2

I 2 6r
(3r+2)2

6r
(3r+2)2

+ 4r
(2r+2)2

dΛ̂ 2
3r+2

1
3r+2 + 1

2r+2
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Time Status X Wt x̄(t) dΛ̂0(t)
1 1 2 1 (2r2 + 11r)dΛ̂0 = x̄1 1/(r2 + 11r + 7)
1 0 0 2
2 1 1 3 11r/(11r + 5) = x̄2 10/(11r + 5)
2 1 1 4
2 1 0 3
2 0 1 2
3 0 0 1
4 1 1 2 2r/(2r + 1) = x̄3 2/(2r + 1)
5 0 0 1

Table 3: Test data 3

3 Test data 3

This is very similar to test data 1, but with the addition of case weights.
There are 9 observations, x is a 0/1/2 covariate, and weights range from 1
to 4. As before, let r = exp(β) be the risk score for a subject with x = 1.
Table 3 shows the data set along with the mean and increment to the hazard
at each point.

3.1 Breslow estimates

The likelihood is now a product of terms, one for each death, of the form(
eXiβ∑

j Yj(ti)wjeXjβ

)wi

leading to a log-likelihood very like equation ??

l(β) =
n∑

i=1

∫ ∞

0

Xi(t)β − log

∑
j

Yj(t)wjrj(t)

widNi(t) (1)

For integer weights, this gives the same results as would be obtained
by replicating each observation the specified number of times, which was in
fact one motivation for the definition. The definitions for the score vector
U and information matrix I simply replace the mean and variance with
weighted versions of the same. Let l(β, w) be the logliklihood when all
the observations are given a common case weight of w; it is easy to prove
that l(β, w) = wl(β, 1) − d log(w) where d is the number of events. One
consequence of this is that the log-likelihood can be positive when many of
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the weights are < 1, which sometimes occurs in survey sampling applications.
(This can be a big surprise the first time one encounters the situation.)

LL = {2β − log(r2 + 11r + 7)}+ 3{β − log(11r + 5)}
+4{β − log(11r + 5)}+ 3{0− log(11r + 5)}
+2{β − log(2r + 1)}

= 11β − log(r2 + 11r + 7)− 10 log(11r + 5)− 2 log(2r + 1)

U = (2− x̄1) + 3(0− x̄2) + 4(1− x̄2) + 3(1− x̄2) + 2(1− x̄3)
= 11− (x̄1 + 10x̄2 + 2x̄3)

I = [(4r2 + 11r)/(r2 + 11r + 7)− x̄2
1] + 10(x̄2 − x̄2

2) + 2(x̄3 − x̄2
3)

The solution corresponds to U(β) = 0, which is the solution point of the
polynomial 66r4 +425r3−771r2−1257r−385 = 0, or β̂ ≈ log(2.3621151) =
0.8595574. Then

LL(0) = −32.86775 LL(β̂) = −32.02105
U(0) = 2.107456 U(β̂) = 0
I(0) = 2.914212 I(β̂) = 1.966563

When β = 0, the three unique values for x̄ at t = 1, 2, and 4 are 13/19,
11/16 and 2/3, respectively, and the increments to the cumulative hazard
are 1/19, 10/16 = 5/8, and 2/3, see table 3. The martingale and score
residuals at β = 0 are β̂ of

Id Time M(0) M(β̂)
A 1 1− 1/19 = 18/19 0.85531
B 1 0− 1/19 = −1/19 -0.02593
C 2 1− (1/19 + 5/8) = 49/152 0.17636
D 2 1− (1/19 + 5/8) = 49/152 0.17636
E 2 1− (1/19 + 5/8) = 49/152 0.65131
F 2 0− (1/19 + 5/8) = −103/152 -0.82364
G 3 0− (1/19 + 5/8) = −103/152 -0.34869
H 4 1− (1/19 + 5/8 + 2/3) = −157/456 -0.64894
I 5 0− (1/19 + 5/8 + 2/3) = −613/456 -0.69808

Score residuals at β = 0 are

13



Id Time Score
A 1 (2− 13/19)(1− 1/19)
B 1 (0− 13/19)(0− 1/19)
C 2 (1− 13/19)(0− 1/19) + (1− 11/16)(1− 5/8)
D 2 (1− 13/19)(0− 1/19) + (1− 11/16)(1− 5/8)
E 2 (0− 13/19)(0− 1/19) + (0− 11/16)(1− 5/8)
F 2 (1− 13/19)(0− 1/19) + (1− 11/16)(0− 5/8)
G 3 (1− 13/19)(0− 1/19) + (0− 11/16)(0− 5/8)
H 4 (1− 13/19)(0− 1/19) + (1− 11/16)(0− 5/8)

+(1− 2/3)(1− 2/3)
I 5 (1− 13/19)(0− 1/19) + (1− 11/16)(0− 5/8)

+(0− 2/3)(0− 2/3)

SAS returns the unweighted residuals as given above; it is the weighted
sum of residuals that totals zero,

∑
wiM̂i = 0, likewise for the score and

Schoenfeld residuals evaluated at β̂. S also returns unweighted residuals
by default, with an option to return the weighted version. Whether the
weighted or the unweighted form is more useful depends on the intended
application, neither is more “correct” than the other. S does differ for the
dfbeta residuals, for which the default is to return weighted values. For the
third observation in this data set, for instance, the unweighted dfbeta is an
approximation to the change in β̂ that will occur if the case weight is changed
from 2 to 3, corresponding to deletion of one of the three “subjects” that
this observation represents, and the weighted form approximates a change
in the case weight from 0 to 3, i.e., deletion of the entire observation.

The increments of the Nelson-Aalen estimate of the hazard are shown
in the rightmost column of table 3. The hazard estimate for a hypothetical
subject with covariate X† is Λi(t) = exp(X†β)Λ0(t) and the survival esti-
mate is Si(t) = exp(−Λi(t)). The two term of the variance, for X† = 0, are
Term1 + d′V d:

Time Term 1
1 1/(r2 + 11r + 7)2

2 1/(r2 + 11r + 7)2 + 10/(11r + 5)2

4 1/(r2 + 11r + 7)2 + 10/(11r + 5)2 + 2/(2r + 1)2

Time d

1 (2r2 + 11r)/(r2 + 11r + 7)2

2 (2r2 + 11r)/(r2 + 11r + 7)2 + 110r/(11r + 5)2

4 (2r2 + 11r)/(r2 + 11r + 7)2 + 110r/(11r + 5)2 + 4r/(2r + 1)2
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For β = log(2) and X† = 0, where k ≡ the variance of β̂ = 1/2.153895
this reduces to

Time Variance
1 1/1089 + k(30/1089)2

2 (1/1089+ 10/729) + k(30/1089 + 220/729)2

4 (1/1089+ 10/729 + 2/25) + k(30/1089 + 220/729 + 8/25)2

giving numeric values of 0.0012706, 0.0649885, and 0.2903805, respectively.

3.2 Efron approximation

For the Efron approximation the combination of tied times and case weights
can be approached in at least two ways. One is to treat the case weights as
replication counts. There are then 10 tied deaths at time 2 in the data above,
and the Efron approximation involves 10 different denominator terms. Let
a = 7r + 3, the sum of risk scores for the 3 observations with an event at
time 2 and b = 4r + 2, the sum of risk scores for the other subjects at risk
at time 2. For the replication approach, the loglikelihood is

LL = {2β − log(r2 + 11r + 7)}+
{7β − log(a + b)− log(.9a + b)− . . .− log(.1a + b)}+
{2β − log(2r + 1)− log(r + 1)}.

A test program can be created by comparing results from the weighted data
set (9 observations) to the unweighted replicated data set (19 observations).
This is the approach taken by SAS phreg using the freq statement. It’s
advantage is that the appropriate result for all of the weighted computations
is perfectly clear, the disadvantage is that only integer case weights are
supported. (A second advantage is that I did not need to create another
algebraic derivation for my test suite.)

A second approach, used in S, allows for non-integer weights. SAS also
has weighted estimates, but I am not familiar with their algorithms. The
data is considered to be 3 tied observations, and the log-likelihood at time
2 is the sum of 3 weighted terms. The first term of the three is one of

3[β − log(a + b)]
4[β − log(a + b)]

or 3[0− log(a + b)],

depending on whether the event for observation C, D or E actually happened
first (had we observed the time scale more exactly); the leading multiplier
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of 3, 4 or 3 is the case weight. The second term is one of 6 possiblities

4[β − log(4r + 3 + b)] CDE

3[β − log(4r + 3 + b)] CED

3[0− log(3r + 3 + b)] DCE

3[0− log(3r + 3 + b)] DEC

3[β − log(7r + 0 + b)] ECD

or 4[β − log(7r + 0 + b)] EDC

The first choice corresponds to an event order of observation C then D
(subject D has the event, with D and E still at risk), etc. For a weighted
Efron approximation first replace each term by its average, just as in the
unweighted case. The first terms ends up as (7/3)β − (10/3) log(a + b), the
second as (7/3)β−20/6 log(2a/3+b), and the third as (7/3)β−10/3 log(a/3+
b). This replaces the interior of the log function with its average, and the
multiplier of the log with the average weight of 10/3.

The final log-likelihood and score statistic are

LL = {2β − log(r2 + 11r + 7)}
+{7β − (10/3)[log(a + b) + log(2a/3 + b) + log(a/3 + b)]}
+2{β − log(2r + 1)}

U = (2− x̄1) + 2(1− x̄3)
+7− (10/3)[x̄2 + 26r/(26r + 12) + 19r/(19r + 9)]

= 11− (x̄1 + (10/3)(x̄2 + x̄2b + x̄2c) + 2x̄3)

I = [(4s2 + 11s)/(s2 + 11s + 7)− x̄2
1]

+(10/3)[(x̄2 − x̄2
2) + (x̄2b − x̄2

2b) + (x̄2b − x̄2
2b)

+2(x̄3 − x̄2
3)

The solution is at β = .87260425, and

LL(0) = −30.29218 LL(β̂) = −29.41678
U(0) = 2.148183 U(β̂) = 0
I(0) = 2.929182 I(β̂) = 1.969447 .

The hazard increment and mean at times 1 and 4 are identical to those
for the Breslow approximation, as shown in table 3. At time 2, the number
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at risk for the first, second and third portions of the hazard increment are
n1 = 11r + 5, n2 = (2/3)(7r + 3) + 4r + 2 = (26r + 12)/3, and n3 =
(1/3)(7r + 3) + 4r + 2 = (19r + 9)/3. Subjects F–I experience the full
hazard at time 2 of (10/3)(1/n1 + 1/n2 + 1/n3), subjects B–D experience
(10/3)(1/n1 + 2/3n2 + 1/3n3). Thus, at β = 0 the martingale residuals are

Id Time M̂(0)
A 1 1 - 1/19 = 18/19
B 1 0 - 1/19 = -1/19
C 2 1 - (1/19 + 10/48 + 20/114 + 10/84) =473/1064
D 2 1 - (1/19 + 10/48 + 20/114 + 10/84) =473/1064
E 2 1 - (1/19 + 10/48 + 20/114 + 10/84) =473/1064
F 2 0 - (1/19 + 10/48 + 10/38 + 10/28) =-2813/3192
G 3 0 - (1/19 + 10/48 + 10/38 + 10/28) =-2813/3192
H 4 1 - (1/19 + 10/48 + 10/38 + 10/28 + 2/3) =-1749/3192
I 5 0 - (1/19 + 10/48 + 10/38 + 10/28 + 2/3) =-4941/3192

The hazard estimate for a hypothetical subject with covariate X† is
Λi(t) = exp(X†β)Λ0(t), Λ0 has increments of 1/(r2 +11r+7, (10/3)(1/n1 +
1/n2 + 1/n3) and 2/(2r + 1). This increment at time 2 is a little larger
than the Breslow jump of 10/d1. The first term of the variance will have
an increment of [exp((X†β)(]2(10/3)(1/n2

1 + 1/n2
2 + 1/n2

3) at time 2. The
increment to the cumulative distance from the center d will be[

X† − 11r

11r + 5

]
10
3n1

+
[
X† − (2/3)7r + 4r

n2

]
(10/3)(1/n2)

+
[
X† − (1/3)7r + 4r

n2

]
(10/3)(1/n3)

For X† = 1 and β = π/3 we get cumulative hazard and variance below.
We have r = eπ/3,

Λ Variance
e/(r2 + 11r + 7) 0.03272832 e2/(r2 + 11r + 7)2

4 Test data 4

This is an extension of test data set 3, but with 3 covariates. Let ri =
exp(Xβ) be the risk score for each subject, β unspecified. Table 4 shows the
data set along with the mean and increment to the hazard at each point.

At β = 0 we have r = 1 and
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Id Time Status x1 x2 x3 Wt Denominator x̄2

1 10 1 0 2 5 1 d1 = r1 + 2r2 + d2 + d3 (2r1 + 3r3 + 4r4 + 2r6 + 2r8)/d1

2 10 0 0 0 2 2
3 20 1 1 1 3 3 d2 = 3r3 + 4r4 + 3r5+ (3r3 + 4r4 + 2r6 + 2r8)/d2

4 20 1 1 1 6 4 2r6 + r7 + d3

5 20 1 0 0 4 3
6 20 0 0 1 3 2
7 30 0 1 0 1 1
8 40 1 1 1 3 2 d3 = 2r8 + r9 2r4/d3

9 50 0 1 0 1 1

Table 4: Test data 4
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