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1 Introduction

`When I use a word,' Humpty Dumpty said, in rather a scornful tone, `it means
just what I choose it to mean - neither more nor less.'

`The question is,' said Alice, `whether you can make words mean so many di�erent
things.'

`The question is,' said Humpty Dumpty, `which is to be master - that's all.'
-Lewis Caroll, Through the Looking Glass

�Validatation� has become a Humpty-Dumpty word: it is used for many di�erent things in
scienti�c research that it has become essentially meaningless without further clari�cation. One
of the more common meanings assigned to it in the software realm is �repeatability�, i.e. that
a new release of a given package or routine will give the same results as it did the week before.
Users of the software often assume the word implies a more rigorous criterion, namely that the
routine gives correct answers.

Validation of the latter type is rare, however; working out formally correct answers is boring,
tedious work. This note contains a set of examples of this latter type. Although the data
sets are very simple, the examples have proven extremely useful in debugging the methods,
not least because all the intermediate steps of each calculation are transparent, and have been
incorporated into the formal test suite for the survival package as the �les book1.R, book2.R,
etc. in the tests subdirectory. They also continue to be a resource for package's defence: I have
been told multiple times that some person or group cannot use R in their work because �SAS
is validated� while R is not. The survival package passes all of the tests below and SAS passes
some but not all of them.

It is my hope that the formal test cases will be a resource for developers on multiple platforms.
Portions of this work were included as an appendix in the textbook of Therneau and Grambsch
[3] precisely for this reason.

2 Basic formulas

All these examples have a single covariate. Let xi be the covariate for each subject, ri = exp(xiβ)
the risk score for the subject, and wi the case weight, if any. Let Yi(t) be 1 if subject i is at risk
at time t and 0 otherwise, and dNi(t) be the death indicator which is 1 if subject i has an event
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at time t. At each death time we have the following quantities:

LPL(t) =

∑
i dNi(t) log(ri)

log (
∑
i Yi(t)wiri)

(1)

x(t) =

∑
i Yi(t)wirixi∑
i Yi(t)wiri

(2)

U(t) =
∑
i

dNi(t)(xi − x(t)) (3)

H(t) =

∑
i Yi(t)(xi − x(t))2∑

i Yi(t)wiri
(4)

=

∑
i Yi(t)x

2
i∑

i Yi(t)wiri
− x(t)2 (5)

λ(t) =

∑
i widNi(t)∑
i Yi(t)wiri

(6)

The denominator for all the sums is the weighted number of subjects who are at risk, LPL is
the contribution to the log partial likelihood at time t, and x and H are the weighted mean and
variance of the covariate x at each time. The sum of H(t) over the death times is the second
derivative of the LPL, also known as the Hessian matrix. U is the contribution to the �rst
derivative of the LPL at time t and λ is the increment in the baseline hazard function.

3 Test data 1

This data set of n = 6 subjects has a single 0/1 covariate x. There is one tied death time, one
time with both a death and a censored observation, one with only a death, and one with only
censoring. (This is as small as a data set can be and still cover these four important cases.) Let
r = exp(β) be the risk score for a subject with x = 1; the risk score is exp(0) = 1 for those with
x = 0. Table 1 shows the data set along with the mean and increment to the hazard at each
time point.

x(t) dΛ̂0(t)
Time Status x Breslow Efron Breslow Efron
1 1 1 r/(r + 1) r/(r + 1) 1/(3r + 3) 1/(3r + 3)
1 0 1
6 1 1 r/(r + 3) r/(r + 3) 1/(r + 3) 1/(r + 3)
6 1 0 r/(r + 3) r/(r + 5) 1/(r + 3) 1/(r + 5)
8 0 0
9 1 0 0 0 1 1

Table 1: Test data 1
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3.1 Breslow estimates

The log partial likelihood (LPL) has a term for each event; each term is the log of the ratio of
the score for the subject who had an event over the sum of scores for those who did not. The
LPL, �rst derivative U of the LPL and second derivative (or Hessian) H are:

LPL = {β − log(3r + 3)}+ {β − log(r + 3)}+ {0− log(r + 3)}+ {0− 0}
= 2β − log(3r + 3)− 2 log(r + 3).

U =

(
1− r

r + 1

)
+

(
1− r

r + 3

)
+

(
0− r

r + 3

)
+ (0− 0)

=
−r2 + 3r + 6

(r + 1)(r + 3)
.

−H =

{
r

r + 1
−
(

r

r + 1

)2
}

+ 2

{
r

r + 3
−
(

r

r + 3

)2
}

+ (0− 0)

=
r

(r + 1)2
+

6r

(r + 3)2
.

(For a 0/1 covariate the variance formula (5) simpli�es to x−x2, but only in that case. We used
this fact above.)

The actual solution corresponds to U(β) = 0, which from the quadratic formula is r =

(1/2)(3 +
√

33); or β̂ = log(r) ≈ 1.475285. The following function computes these quantities.

> breslow1 <- function(beta) {

# first test data set, Breslow approximation

r = exp(beta)

lpl = 2*beta - (log(3*r +3) + 2*log(r+3))

U = (6+ 3*r - r^2)/((r+1)*(r+3))

H = r/(r+1)^2 + 6*r/(r+3)^2

c(beta=beta, loglik=lpl, U=U, H=H)

}

> beta <- log((3 + sqrt(33))/2)

> temp <- rbind(breslow1(0), breslow1(beta))

> dimnames(temp)[[1]] <- c("beta=0", "beta=solution")

> temp

beta loglik U H

beta=0 0.000000 -4.564348 1 0.6250000

beta=solution 1.475285 -3.824750 0 0.6341681

The maximum partial likelihood occurs when U(β) = 0, namely r2 − 3r − 6 = 0. Using the

usual formula for a quadratic equation gives r = (1/2)(3 +
√

33) and β̂ = log(r) ≈ 1.475285.
The above call to breslow1 veri�es that the �rst derivative is zero at this point. The Newton�
Raphson iteration has increments of −H−1U . Starting with the usual initial estimate of β = 0,
the �rst iteration is β = 8/5 and further ones are shown below.
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> iter <- matrix(0, nrow=6, ncol=4,

dimnames=list(paste("iter", 0:5),

c("beta", "loglik", "U", "H")))

> # Exact Newton-Raphson

> beta <- 0

> for (i in 1:5) {

iter[i,] <- breslow1(beta)

beta <- beta + iter[i,"U"]/iter[i,"H"]

}

> print(iter, digits=9)

beta loglik U H

iter 0 0.00000000 -4.56434819 1.00000000e+00 0.625000000

iter 1 1.60000000 -3.82961962 -7.75891712e-02 0.609611286

iter 2 1.47272353 -3.82475159 1.62495334e-03 0.634641180

iter 3 1.47528396 -3.82474951 6.05079992e-07 0.634168319

iter 4 1.47528491 -3.82474951 8.41399792e-14 0.634168143

iter 5 0.00000000 0.00000000 0.00000000e+00 0.000000000

> # coxph fits

> test1 <- data.frame(time= c(1, 1, 6, 6, 8, 9),

status=c(1, 0, 1, 1, 0, 1),

x= c(1, 1, 1, 0, 0, 0))

> temp <- matrix(0, nrow=6, ncol=4,

dimnames=list(1:6, c("iter", "beta", "loglik", "H")))

> for (i in 0:5) {

tfit <- coxph(Surv(time, status) ~ x, data=test1,

ties="breslow", iter.max=i)

temp[i+1,] <- c(tfit$iter, coef(tfit), tfit$loglik[2], 1/vcov(tfit))

}

> temp

iter beta loglik H

1 0 0.000000 -4.564348 0.6250000

2 2 1.600000 -3.829620 0.6096113

3 3 1.472724 -3.824752 0.6346412

4 4 1.475284 -3.824750 0.6341683

5 4 1.475285 -3.824750 0.6341681

6 4 1.475285 -3.824750 0.6341681

The coxph routine declares convergence after 4 iterations for this data set, so the last two calls
with iter.max of 4 and 5 give identical results.

The martingale residuals are de�ned as O−E = observed - expected, where the observed is
the number of events for the subject (0 or 1) and E is the expected number assuming that the
model is completely correct. For the �rst death all 6 subjects are at risk, and the martingale
formulation views the outcome as a lottery in which the subjects hold r, r, r, 1, 1 and 1 tickets,
respectively. The contribution to E for subject 1 at time 1 is thus r/(r + 3). Carrying this
forward the residuals can be written as simple function of the cumulative baseline hazard Λ0(t),
the Nelson cumulative hazard estimator with case weights of wiri; this is shown in the `Breslow'
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column of table 1. (Also known as the Aalen estimate, Breslow estimate, and all possible
combinations of the three names.) Then the residual can be written as

Mi = δi − exp(xiβ)Λ̂(ti) (7)

Each of the two subjects who die at time 6 are credited with the full hazard increment at time
6. Residuals at β = 0 and β̂ are shown in the table below.

Subject Λ0 M̂(0) M̂(β̂)
1 1/(3r + 3) 5/6 0.728714
2 1/(3r + 3) −1/6 -0.271286
3 1/(3r + 3) + 2/(r + 3) 1/3 -0.457427
4 1/(3r + 3) + 2/(r + 3) 1/3 0.666667
5 1/(3r + 3) + 2/(r + 3) −2/3 -0.333333
6 1/(3r + 3) + 2/(r + 3) + 1 −2/3 -0.333333

The score statistic U can be written as a two way sum involving the covariate(s) and the
martingale residuals

U =

n∑
i=1

∫
[xi − x(t)]dMi(t) (8)

The martingale residual M has jumps at the observed deaths, leading to the table below with 6
rows and 3 columns. The score residuals Li are de�ned as the per-patient contributions to this
total, i.e., the row sums, and the Schoenfeld residuals are the per-time point contributions, i.e.,
the column sums.

Time
Subject 1 6 9

1
(

1− r
r+1

)(
1− r

3r+3

)
0 0

2
(

1− r
r+1

)(
0− r

3r+3

)
0 0

3
(

1− r
r+1

)(
0− r

3r+3

) (
1− r

r+3

)(
1− 2r

r+3

)
0

4
(

0− r
r+1

)(
0− 1

3r+3

) (
0− r

r+3

)(
1− 2

r+3

)
0

5
(

0− r
r+1

)(
0− 1

3r+3

) (
0− r

r+3

)(
0− 2

r+3

)
0

6
(

0− r
r+1

)(
0− 1

3r+3

) (
0− r

r+3

)(
0− 2

r+3

)
(0 - 0) (1-1)

At β = 0 the score residuals are 5/12, -1/12, 7/24, -1/24, 5/24 and 5/24. Showing that the
three column sums are identical to the three terms of equation (3) is left as an exercise for the
reader, namely 1 − x(1), (1 − x(6)) + (0 − x(6)) and 1 − x(9). The computer program returns
4 residuals, one per event, rather than one per death time as this has proven to be more useful
for plots and other downstream computations.

In the multivariate case there will be a matrix like the above for each covariate. Let L be the
n by p matrix made up of the collection of row sums where n is the number of subjects and p is
the number of covariates, this is the matrix of score residuals. The dfbeta residuals are the n by p
matrix D = LH−1; H has been de�ned above for this data set. D is an approximate measure of
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the in�uence of each observation on the solution vector. Similarly, the scaled Schoenfeld residuals
are the (number of events) by p matrix obtained by multiplying the Schoenfeld residuals by H−1.

As stated above there is a close connection between the Nelson-Aalen estimate estimate of
cumulative hazard and the Breslow approximation for ties. The baseline hazard is shown as
the column Λ0 in table 1. The estimated hazard for a subject with covariate xi is Λi(t) =
exp(xiβ)Λ0(t) and the survival estimate for the subject is Si(t) = exp(−Λi(t)). The variance of
the cumulative hazard is the sum of two terms. Term 1 is a natural extension of the Nelson�
Aalen estimator to the case where there are weights. It is a running sum, with an increment
at each death of 1/(

∑
Yi(t)ri(t))

2. For a subject with covariate xi this term is multiplied by
[exp(xiβ)]2. The second term is cH−1c′, where H is the information matrix of the Cox model
and c is a vector. The second term accounts for the fact that the weights themselves have a
variance; c is the derivative of S(t) with respect to β and can be formally written as

exp(xβ)

∫ t

0

(x̄(s)− xi)dΛ̂0(s) .

This can be recognized as −1 times the score residual process for a subject with xi as covariates
and no events; it measures leverage of a particular observation on the estimate of β. It is intuitive
that a small score residual � an observation whose covariates has little in�uence on β � results
in a small added variance; that is, β has little in�uence on the estimated survival.

Time Term 1
1 1/(3r + 3)2

6 1/(3r + 3)2 + 2/(r + 3)2

9 1/(3r + 3)2 + 2/(r + 3)2 + 1/12

Time c
1 (r/(r + 1)) ∗ 1/(3r + 3)
6 (r/(r + 1)) ∗ 1/(3r + 3) + (r/(r + 3)) ∗ 2/(r + 3)
9 (r/(r + 1)) ∗ 1/(3r + 3) + (r/(r + 3)) ∗ 2/(r + 3) + 0 ∗ 1

For β = 0, x = 0:

Time Variance
1 1/36 + 1.6 ∗ (1/12)2 = 7/180
6 (1/36 + 2/16) + 1.6 ∗ (1/12 + 2/16)2 = 2/9
9 (1/36 + 2/16 + 1) + 1.6 ∗ (1/12 + 2/16 + 0)2 = 11/9

For β = 1.4752849, x = 0

Time Variance
1 0.0038498 + .004021 = 0.007871
2 0.040648 + .0704631 = 0.111111
4 1.040648 + .0704631 = 1.111111

3.2 Efron approximation

The Efron approximation [1] di�ers from the Breslow only at day 6, where two deaths occur. A
useful way to view the approximation is to recast the problem as a lottery model. On day 1 there
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were 6 subjects in the lottery and 1 ticket was drawn, at which time the winner became ineligible
for further drawings and withdrew. On day 6 there were 4 subjects in the drawing (at risk) and
two tickets (deaths) were drawn. The Breslow approximation considers all four subjects to be
eligible for both drawings, which implies that one of them could in theory have won both, that
is, died twice. This is of clearly impossible. The Efron approximation treats the two drawings
on day 6 as sequential. All four living subjects are at risk for the �rst of them, then the winner
is withdrawn. Three subjects are eligible for the second drawing, either subjects 3, 5, and 6 or
subjects 2, 5, and 6, but we do not know which. In some sense then, subjects 3 and 4 each have
�.5 probability" of being at risk for the second event at time 6. In the computation, we treat the
two deaths at time 6 as two separate times (two terms in the loglik), with subjects 3 and 4 each
having a case weight of 1/2 for the second one. The mean covariate for the second event is then

1 ∗ r/2 + 0 ∗ 1/2 + 0 ∗ 1 + 0 ∗ 1

r/2 + 1/2 + 1 + 1
=

r

r + 5

and the main quantities are

LL = {β − log(3r + 3)}+ {β − log(r + 3)}+ {0− log(r/2 + 5/2)}+ {0− 0}
= 2β − log(3r + 3)− log(r + 3)− log(r/2 + 5/2)

U =

(
1− r

r + 1

)
+

(
1− r

r + 3

)
+

(
0− r

r + 5

)
+ (0− 0)

=
−r3 + 23r + 30

(r + 1)(r + 3)(r + 5)

I =

{
r

r + 1
−
(

r

r + 1

)2
}

+

{
r

r + 3
−
(

r

r + 3

)2
}

+

{
r

r + 5
−
(

r

r + 5

)2
}
.

The solution corresponds to the one positive root of U(β) = 0, which is r = 2
√

23/3 cos(φ/3)

where φ = arccos{(45/23)
√

3/23} via the standard formula for the roots of a cubic equation.

This yields r ≈ 5.348721 or β̂ = log(r) ≈ 1.676857. Plugging this value into the formulas above
yields

LL(0) = −4.276666 LL(β̂) = −3.358979

U(0) = 52/48 U(β̂) = 0

H(0) = 83/144 H(β̂) = 0.612632.

The martingale residuals are again O−E, but the expected part of the calculation changes.
For the �rst drawing at time 6 the total number of �tickets� in the drawing is r+1+1+1; subject
4 has an increment of r/(r+ 3) and the others 1/(r+ 3) to their expected value. For the second
event at time 6 subjects 3 and 4 have a weight of 1/2, the total number of tickets is (r + 5)/2
and the consequent increment in the cumulative hazard is 2/(r+ 5). This β = 0 this calculation
is equivalent to the Fleming-Harrington [2] estimate of cumulative hazard. Subjects 3 and 4
receive 1/2 of this second increment to E and subjects 5 and 6 the full increment. Efron [1]
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did not discuss residuals so did not investigate this aspect of the approximation, we nevertheless
sometime refer to this using combinations of Fleming, Harrington, Efron in the same way as the
Nelson-Aalen-Breslow estimate. The martingale residuals are

Subject Mi

1 1− r/(3r + 3)
2 0− r/(3r + 3)
3 1− r/(3r + 3)− r/(r + 3)− r/(r + 5)
4 1− 1/(3r + 3)− 1/(r + 3)− 1/(r + 5)
5 0− 1/(3r + 3)− 1/(r + 3)− 2/(r + 5)
6 0− 1/(3r + 3)− 1/(r + 3)− 2/(r + 5)− 1

giving residuals at β = 0 of 5/6, -1/6, 5/12, 5/12, -3/4 and -3/4.
The matrix de�ning the score and Schoenfeld residuals has the same �rst column (time 1)

and last column as before, with the following contributions at time 6.

Time
Subject 6 (�rst) 6 (second)

1 0 0
2 0 0

3
(

1− r
r+3

)(
1− r

r+3

) (
1− r

r+5

)(
1− 2r

r+5

)
/2

4
(

0− r
r+3

)(
0− 1

r+3

) (
0− r

r+5

)(
1− 2

r+5

)
/2

5
(

0− r
r+3

)(
0− 1

r+3

) (
0− r

r+5

)(
0− 2

r+5

)
6

(
0− r

r+3

)(
0− 1

r+3

) (
0− r

r+5

)(
0− 2

r+5

)
The score residuals at β = 0 are 5/12, -1/12, 55/144, -5/144, 29/144 and 29/144.

It is an error to generate residuals for the Efron method by using formula (7), which was de-
rived from the Breslow approximation. It is clear that some packages do exactly this, however,
which can be veri�ed using formulas from above. (Statistical forensics is another use for our
results.) What are the consequences of this? On a formal level the resulting �martingale residu-
als� no longer have an expected value of 0 and thus are not martingales, so one loses theoretical
backing for derived plots or statistics. The score, Schoenfeld, dfbeta and scaled Schoenfeld resid-
uals are based on the martingale residual so su�er the same loss. On a practical level, when the
fraction of ties is small it is quite often the case that β̂ is nearly the same when using the Breslow
and Efron approach. We have normally found the correct and ad hoc residuals to be similar
as well in that case, su�ciently so that explorations of functional form (martingale residuals),
leverage and robust variance (dfbeta) and proportional hazards (scaled Schoenfeld) led to the
same conclusions. This may not hold when there is a large number of ties.

The variance formula for the baseline hazard function in the Efron case is evaluated the same
way as before, as the sum of (hazard increment)2, treating a tied death as multiple separate
hazard increments. In term 1 of the variance, the variance increment at time 6 is now 1/(r +
3)2 + 4/(r+ 5)2 rather than 2/(r+ 3)2. The increment to d at time 6 is (r/(r+ 3)) ∗ 1/(r+ 3) +
(r/(r+ 5)) ∗ 2/(r+ 5). (Numerically, the result of this computation is intermediate between the
Nelson�Aalen variance and the Greenwood variance used in the Kaplan�Meier.)

For β = 0, x = 0, let v = H−1 = 144/83.
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Time Variance
1 1/36

+ v(1/12)2 = 119/2988
6 (1/36 + 1/16 + 4/25)

+ v(1/12 + 1/16 + 1/18)2 = 1996/6225
9 (1/36 + 1/16 + 4/25 + 1)

+ v(1/12 + 1/16 + 1/18 + 0)2 = 8221/6225

For β = 1.676857, x = 0.

Time Variance
1 0.00275667 + .00319386 = 0.0059505
2 0.05445330 + .0796212 = 0.134075
4 1.05445330 + .0796212 = 1.134075

3.3 Exact partial likelihood

Returning to the lottery analogy, for the two deaths at time 6 the exact partial likelihood
computes the direct probability that those two subjects would be selected given that a pair will
be chosen. The numerator is r3r4, the product of the risk scores of the subjects with an event,
and the denominator is the sum over all 6 pairs who could have been chosen: r3r4 +r3r5 +r3r6 +
r4r5 + r4r6 + r5r6. (If there were 10 tied deaths from a pool of 60 available the sum will have
over 75 billion terms, each a product of 10 values; a truly formidable computation!) In our case,
three of the four subjects at risk at time 6 have a risk score of exp(0x) = 1 and one a risk score
of r, and the denominator is r + r + r + 1 + 1 + 1.

LL = {β − log(3r + 3)}+ {β − log(3r + 3)}+ {0− 0}
= 2{β − log(3r + 3)}.

U =

(
1− r

r + 1

)
+

(
1− r

r + 1

)
+ (0− 0)

=
2

r + 1
.

−H =
2r

(r + 1)2
.

The solution U(β) = 0 corresponds to r = ∞, with a loglikelihood that asymptotes to
−2 log(3) = 2.1972. The Newton�Raphson iteration has increments of (r + 1)/r leading to the

following iteration for β̂:

> temp <- matrix(0, 8, 3)

> dimnames(temp) <- list(paste0("iteration ", 0:7, ':'), c("beta", "loglik", "H"))

> bhat <- 0

> for (i in 1:8) {

r <- exp(bhat)
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temp[i,] <- c(bhat, 2*(bhat - log(3*r +3)), 2*r/(r+1)^2)

bhat <- bhat + (r+1)/r

}

> round(temp,3)

beta loglik H

iteration 0: 0.000 -3.584 0.500

iteration 1: 2.000 -2.451 0.210

iteration 2: 3.135 -2.282 0.080

iteration 3: 4.179 -2.228 0.030

iteration 4: 5.194 -2.208 0.011

iteration 5: 6.200 -2.201 0.004

iteration 6: 7.202 -2.199 0.001

iteration 7: 8.202 -2.198 0.001

The Newton-Raphson iteration quickly settles down to addition of a constant increment to β̂
at each step while the partial likelihood approaches an asymptote: this is a fairly common case
when the Cox MLE is in�nite. A solution at β̂ = 10 or 15 is hardly di�erent in likelihood from
the true maximum, and most programs will stop iterating around this point. The information
matrix, which measures the curvature of the likelihood function at β, rapidly goes to zero as β
grows.

It is di�cult to describe a satisfactory de�nition of the expected number of events for each
subject and thus a de�nition of the proper martingale residual for the exact calculation. Among
other things it should lead to a consistent score residual, i.e., ones that sum to the total score
statistic U

Li =

∫
(xi − x(t))dMi(t)∑

Li = U

The residuals de�ned above for the Breslow and Efron approximations have this property, for
instance. The exact partial likelihood contribution to U for a set of set of k tied deaths, however,
is a sum of all subsets of size k; how would one partition this term as a simple sum over subjects?

The exact partial likelihood is infrequently used and examination of post �t residuals is even
rarer. The survival package (and all others that I know of) takes the easy road in this case
and uses equation (7) along with the Nelson-Aalen-Breslow hazard to form residuals. They are
certainly not correct, but the viable options were to use this, the Efron residuals, or print an
error message.

At β̂ =∞ the Breslow residuals are still well de�ned. Subjects 1 to 3, those with a covariate
of 1, experience a hazard of r/(3r + 3) = 1/3 at time 1. Subject 3 accumulates a hazard of 1/3
at time 1 and a further hazard of 2 at time 6. The remaining subjects are at an in�nitely lower
risk during days 1 to 6 and accumulate no hazard then, with subject 6 being credited with 1
unit of hazard at the last event. The residuals are thus 1− 1/3 = 2/3, 0− 1/3, 1− 7/3 = −4/3,
1− 0, 0, and 0, respectively, for the six subjects.
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Number

Time Status x at Risk x dΛ̂
(1,2] 1 1 2 r/(r + 1) 1/(r + 1)
(2,3] 1 0 3 r/(r + 2) 1/(r + 2)
(5,6] 1 0 5 3r/(3r + 2) 1/(3r + 2)
(2,7] 1 1 4 3r/(3r + 1) 1/(3r + 1)
(1,8] 1 0 4 3r/(3r + 1) 1/(3r + 1)
(7,9] 1 1 5 3r/(3r + 2) 2/(3r + 2)
(3,9] 1 1
(4,9] 0 1
(8,14] 0 0 2 0 0
(8,17] 0 0 1 0 0

Table 2: Test data 2

4 Test data 2

This data set also has a single covariate, but in this case a (start, stop] style of input is employed.
Table 2 shows the data sorted by the end time of the risk intervals. The columns for x and hazard
are the values at the event times; events occur at the end of each interval for which status = 1.

4.1 Breslow approximation

For the Breslow approximation we have

LL = log

(
r

r + 1

)
+ log

(
1

r + 2

)
+ log

(
1

3r + 2

)
+

log

(
r

3r + 1

)
+ log

(
1

3r + 1

)
+ 2 log

(
r

3r + 2

)
= 4β − log(r + 1)− log(r + 3)− 3 log(3r + 2)− 2 log(3r + 1).

U =

(
1− r

r + 1

)
+

(
0− r

r + 2

)
+

(
0− 3r

3r + 2

)
+(

1− 3r

3r + 1

)
+

(
0− 3r

3r + 1

)
+ 2

(
1− 3r

3r + 2

)

H =
r

(r + 1)2
+

2r

(r + 2)2
+

6r

(3r + 2)2
+

3r

(3r + 1)2

3r

(3r + 1)2
+

12r

(3r + 2)2
.

In this case U is a quartic equation and we �nd the solution numerically.
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> ufun <- function(r) {

4 - (r/(r+1) + r/(r+2) + 3*r/(3*r+2) + 6*r/(3*r+1) + 6*r/(3*r+2))

}

> rhat <- uniroot(ufun, c(.5, 1.5), tol=1e-8)$root

> bhat <- log(rhat)

> c(rhat=rhat, bhat=bhat)

rhat bhat

0.91894769 -0.08452608

The solution is at U(β̂) = 0 or r ≈ .9189477; β̂ = log(r) ≈ −.084526. Then

LL(0) = −9.392662 LL(β̂) = −9.387015

U(0) = −2/15 U(β̂) = 0

H(0) = 2821/1800 H(β̂) = 1.586934

The martingale residuals are (status�cumulative hazard) or O−E = δi−
∫
Yi(s)ridΛ̂(s). Let

λ̂1, . . . , λ̂6 be the six increments to the cumulative hazard listed in Table 2. Then the cumulative
hazards and martingale residuals for the subjects are as follows.

Subject Λi M̂(0) M̂(β̂)

1 rλ̂1 1�30/60 0.521119

2 λ̂2 1�20/60 0.657411

3 λ̂3 1�12/60 0.789777

4 r(λ̂2 + λ̂3 + λ̂4) 1�47/60 0.247388

5 λ̂1 + λ̂2 + λ̂3 + λ̂4 + λ̂5 1�92/60 -0.606293

6 r ∗ (λ̂5 + λ̂6) 1�39/60 0.369025

7 r ∗ (λ̂3 + λ̂4 + λ̂5 + λ̂6) 1�66/60 -0.068766

8 r ∗ (λ̂3 + λ̂4 + λ̂5 + λ̂6) 0�66/60 -1.068766

9 λ̂6 0�24/60 -0.420447

10 λ̂6 0�24/60 -0.420447

The score and Schoenfeld residuals can be laid out in a tabular fashion. Each entry in the
table is the value of {xi − x(tj)}dM̂i(tj) for subject i and event time tj . The row sums of the
table are the score residuals for the subject; the column sums are the Schoenfeld residuals at
each event time. Below is the table for β = log(2) (r = 2). This is a slightly more stringent
test than the table for β = 0, since in this latter case a program could be missing a factor of
r = exp(β) = 1 and give the correct answer. However, the results are much more compact than

those for β̂, since the solutions are exact fractions.
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Event Time Score

Id 2 3 6 7 8 9 Resid

1 1
9

1
9

2 − 3
8 − 3

8

3 − 21
32 − 21

32

4 − 1
4 − 1

16
5
49 − 165

784

5 2
9

1
8

3
32

6
49 − 36

49 − 2417
14112

6 − 2
49

1
8

33
392

7 − 1
16 − 2

49 − 2
49

1
8 − 15

784

8 − 1
16 − 2

49 − 2
49 − 1

8 − 211
784

9 3
16

3
16

10 3
16

3
16

1
3 − 1

2 − 3
4

1
7 − 6

7
1
2 − 95

84

1
r+1

−r
r+2

−3r
r+2

1
3r+1

3r
3r+1

4
3r+2

Both the Schoenfeld and score residuals sum to the score statistic U(β). As discussed further
above, programs will return two Schoenfeld residuals at time 7, one for each subject who had an
event at that time.

4.2 Efron approximation

This example has only one tied death time, so only the term(s) for the event at time 9 change.
The main quantities at that time point are as follows.

Breslow Efron

LL 2 log
(

r
3r+2

)
log
(

r
3r+2

)
+ log

(
r

2r+2

)
U 2

3r+2
1

3r+2 + 1
2r+2

H 2 6r
(3r+2)2

6r
(3r+2)2 + 4r

(2r+2)2

dΛ̂ 2
3r+2

1
3r+2 + 1

2r+2

5 Test data 3

This is very similar to test data 1, but with the addition of case weights. There are 9 observations,
x is a 0/1/2 covariate, and weights range from 1 to 4. As before, let r = exp(β) be the risk score
for a subject with x = 1. Table 3 shows the data set along with the mean and increment to the
hazard at each point.
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Time Status X Wt x(t) dΛ̂0(t)

1 1 2 1 (2r2 + 11r)dΛ̂0 = x1 1/(r2 + 11r + 7)
1 0 0 2
2 1 1 3 11r/(11r + 5) = x2 10/(11r + 5)
2 1 1 4
2 1 0 3
2 0 1 2
3 0 0 1
4 1 1 2 2r/(2r + 1) = x3 2/(2r + 1)
5 0 0 1

Table 3: Test data 3

5.1 Breslow estimates

The likelihood is a product of terms, one for each death, of the form(
eXiβ∑

j Yj(ti)wje
Xjβ

)wi

For integer weights, this gives the same results as would be obtained by replicating each observa-
tion the speci�ed number of times, which is in fact one motivation for the de�nition. The de�ni-
tions for the score vector U and information matrix H simply replace the mean and variance with
weighted versions of the same. Let PL(β,w) be the log partial liklihood when all the observations
are given a common case weight of w; it is easy to prove that PL(β,w) = wPL(β, 1)− d log(w)
where d is the number of events. One consequence of this is that PL can be positive for weights
that are less than 1, a case which sometimes occurs in survey sampling applications. (This can
be a big surprise the �rst time one encounters it.)

LL = {2β − log(r2 + 11r + 7)}+ 3{β − log(11r + 5)}
+4{β − log(11r + 5)}+ 3{0− log(11r + 5)}
+2{β − log(2r + 1)}

= 11β − log(r2 + 11r + 7)− 10 log(11r + 5)− 2 log(2r + 1)

U = (2− x1) + 3(0− x2) + 4(1− x2) + 3(1− x2) + 2(1− x3)

= 11− [(2r2 + 11r)/(r2 + 11r + 7) + 10(11r/(11r + 5)) + 2(2r/(2r + 1))]

I = [(4r2 + 11r)/(r2 + 11r + 7)− x21] + 10(x2 − x22) + 2(x3 − x23)

The solution corresponds to U(β) = 0 and can be computed using a simple search for the
zero of the equation.

> ufun <- function(r) {

xbar <- c( (2*r^2 + 11*r)/(r^2 + 11*r +7), 11*r/(11*r + 5), 2*r/(2*r +1))

11- (xbar[1] + 10* xbar[2] + 2* xbar[3])

14



}

> rhat <- uniroot(ufun, c(1,3), tol= 1e-9)$root

> bhat <- log(rhat)

> c(rhat=rhat, bhat=bhat)

rhat bhat

2.3621151 0.8595574

From this we have

> wfun <- function(r) {

beta <- log(r)

pl <- 11*beta - (log(r^2 + 11*r + 7) + 10*log(11*r +5) + 2*log(2*r +1))

xbar <- c((2*r^2 + 11*r)/(r^2 + 11*r +7), 11*r/(11*r +5), 2*r/(2*r +1))

U <- 11 - (xbar[1] + 10*xbar[2] + 2*xbar[3])

H <- ((4*r^2 + 11*r)/(r^2 + 11*r +7)- xbar[1]^2) +

10*(xbar[2] - xbar[2]^2) + 2*(xbar[3]- xbar[3]^2)

c(loglik=pl, U=U, H=H)

}

> temp <- matrix(c(wfun(1), wfun(rhat)), ncol=2,

dimnames=list(c("loglik", "U", "H"), c("beta=0", "beta-hat")))

> round(temp, 6)

beta=0 beta-hat

loglik -32.867551 -32.021046

U 2.107456 0.000000

H 2.914212 1.966555

When β = 0, the three unique values for x at t = 1, 2, and 4 are 13/19, 11/16 and 2/3,
respectively, and the increments to the cumulative hazard are 1/19, 10/16 = 5/8, and 2/3, see

table 3. The martingale and score residuals at β = 0 and β̂ are

Id Time M(0) M(β̂)
A 1 1− 1/19 = 18/19 0.85531
B 1 0− 1/19 = −1/19 -0.02593
C 2 1− (1/19 + 5/8) = 49/152 0.17636
D 2 1− (1/19 + 5/8) = 49/152 0.17636
E 2 1− (1/19 + 5/8) = 49/152 0.65131
F 2 0− (1/19 + 5/8) = −103/152 -0.82364
G 3 0− (1/19 + 5/8) = −103/152 -0.34869
H 4 1− (1/19 + 5/8 + 2/3) = −157/456 -0.64894
I 5 0− (1/19 + 5/8 + 2/3) = −613/456 -0.69808

Score residuals at β = 0 are
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Id Time Score
A 1 (2− 13/19)(1− 1/19)
B 1 (0− 13/19)(0− 1/19)
C 2 (1− 13/19)(0− 1/19) + (1− 11/16)(1− 5/8)
D 2 (1− 13/19)(0− 1/19) + (1− 11/16)(1− 5/8)
E 2 (0− 13/19)(0− 1/19) + (0− 11/16)(1− 5/8)
F 2 (1− 13/19)(0− 1/19) + (1− 11/16)(0− 5/8)
G 3 (1− 13/19)(0− 1/19) + (0− 11/16)(0− 5/8)
H 4 (1− 13/19)(0− 1/19) + (1− 11/16)(0− 5/8)

+(1− 2/3)(1− 2/3)
I 5 (1− 13/19)(0− 1/19) + (1− 11/16)(0− 5/8)

+(0− 2/3)(0− 2/3)

R also returns unweighted residuals by default, with an option to return the weighted version;
it is the weighted sum of residuals that totals zero,

∑
wiM̂i = 0. Whether the weighted or the

unweighted form is more useful depends on the intended application, neither is more �correct�
than the other. R does di�er for the dfbeta residuals, for which the default is to return weighted
values. For the third observation in this data set, for instance, the unweighted dfbeta is an
approximation to the change in β̂ that will occur if the case weight is changed from 2 to 3,
corresponding to deletion of one of the three �subjects� that this observation represents, and the
weighted form approximates a change in the case weight from 0 to 3, i.e., deletion of the entire
observation.

The increments of the Nelson-Aalen estimate of the hazard are shown in the rightmost col-
umn of table 3. The hazard estimate for a hypothetical subject with covariate X† is Λi(t) =
exp(X†β)Λ0(t) and the survival estimate is Si(t) = exp(−Λi(t)). The two term of the variance,
for X† = 0, are Term1 + d′V d:

Time Term 1
1 1/(r2 + 11r + 7)2

2 1/(r2 + 11r + 7)2 + 10/(11r + 5)2

4 1/(r2 + 11r + 7)2 + 10/(11r + 5)2 + 2/(2r + 1)2

Time d
1 (2r2 + 11r)/(r2 + 11r + 7)2

2 (2r2 + 11r)/(r2 + 11r + 7)2 + 110r/(11r + 5)2

4 (2r2 + 11r)/(r2 + 11r + 7)2 + 110r/(11r + 5)2 + 4r/(2r + 1)2

For β = log(2) and X† = 0, where k ≡ the variance of β̂ = 1/2.153895 this reduces to

Time Variance
1 1/1089 + k(30/1089)2

2 (1/1089+ 10/729) + k(30/1089 + 220/729)2

4 (1/1089+ 10/729 + 2/25) + k(30/1089 + 220/729 + 8/25)2

giving numeric values of 0.0012706, 0.0649885, and 0.2903805, respectively.
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5.2 Efron approximation

For the Efron approximation the combination of tied times and case weights can be approached
in at least two ways. One is to treat the case weights as replication counts. There are then
10 tied deaths at time 2 in the data above, and the Efron approximation involves 10 di�erent
denominator terms. Let a = 7r + 3, the sum of risk scores for the 3 observations with an event
at time 2 and b = 4r+ 2, the sum of risk scores for the other subjects at risk at time 2. For the
replication approach, the loglikelihood is

LL = {2β − log(r2 + 11r + 7)}+

{7β − log(a+ b)− log(.9a+ b)− . . .− log(.1a+ b)}+

{2β − log(2r + 1)− log(r + 1)}.

A test program can be created by comparing results from the weighted data set (9 observations)
to the unweighted replicated data set (19 observations). This is the approach taken by SAS
phreg using the freq statement. It's advantage is that the appropriate result for all of the
weighted computations is perfectly clear the disadvantage is that the only integer case weights are
supported. (A secondary advantage is that I did not need to create another algebraic derivation
for this appendix.)

A second approach, used in the survival package, allows for non-integer weights. The data is
considered to be 3 tied observations, and the log-likelihood at time 2 is the sum of 3 weighted
terms. The �rst term of the three is one of

3[β − log(a+ b)]

4[β − log(a+ b)]

or 3[0− log(a+ b)],

depending on whether the event for observation C, D or E actually happened �rst (had we
observed the time scale more exactly); the leading multiplier of 3, 4 or 3 is the case weight. The
second term is one of

4[β − log(4s+ 3 + b)]

3[0− log(4s+ 3 + b)]

3[β − log(3s+ 3 + b)]

3[β − log(3s+ 3 + b)]

3[0− log(4s+ 3 + b)]

or 4[β − log(4s+ 3 + b)].

The �rst choice corresponds to an event order of observation C then D (subject D has the event,
with D and E still at risk), the second to C → E, then D → C, D → E, E → C and E → D,
respectively. For a weighted Efron approximation �rst replace the argument to the log function
by its average argument, just as in the unweighted case. Once this is done the average term in
the above corresponds to using an average weight of 10/3.
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The �nal log-likelihood and score statistic are

LL = {2β − log(r2 + 11r + 7)}
+{7β − (10/3)[log(a+ b) + log(2a/3 + b) + log(a/3 + b)]}
+2{β − log(2r + 1)}

U = (2− x1) + 2(1− x3)

+7− (10/3)[x2 + 26r/(26r + 12) + 19r/(19r + 9)]

= 11− (x1 + (10/3)(x2 + x2b + x2c) + 2x3)

I = [(4s2 + 11s)/(s2 + 11s+ 7)− x21]

+(10/3)[(x2 − x22) + (x2b − x22b) + (x2b − x22b)
+2(x3 − x23)

The solution is at β = .87260425, and

LL(0) = −30.29218 LL(β̂) = −29.41678

U(0) = 2.148183 U(β̂) = 0

H(0) = 2.929182 H(β̂) = 1.969447 .

The hazard increment and mean at times 1 and 4 are identical to those for the Breslow
approximation, as shown in table 3. At time 2, the number at risk for the �rst, second and third
portions of the hazard increment are n1 = 11r + 5, n2 = (2/3)(7r + 3) + 4r + 2 = (26r + 12)/3,
and n3 = (1/3)(7r + 3) + 4r + 2 = (19r + 9)/3. Subjects F�I experience the full hazard at time
2 of (10/3)(1/n1 + 1/n2 + 1/n3), subjects B�D experience (10/3)(1/n1 + 2/3n2 + 1/3n3). Thus,
at β = 0 the martingale residuals are

Id Time M̂(0)
A 1 1 - 1/19 = 18/19
B 1 0 - 1/19 = -1/19
C 2 1 - (1/19 + 10/48 + 20/114 + 10/84) =473/1064
D 2 1 - (1/19 + 10/48 + 20/114 + 10/84) =473/1064
E 2 1 - (1/19 + 10/48 + 20/114 + 10/84) =473/1064
F 2 0 - (1/19 + 10/48 + 10/38 + 10/28) =-2813/3192
G 3 0 - (1/19 + 10/48 + 10/38 + 10/28) =-2813/3192
H 4 1 - (1/19 + 10/48 + 10/38 + 10/28 + 2/3) =-1749/3192
I 5 0 - (1/19 + 10/48 + 10/38 + 10/28 + 2/3) =-4941/3192

The hazard estimate for a hypothetical subject with covariate X† is Λi(t) = exp(X†β)Λ0(t),
Λ0 has increments of 1/(r2 +11r+7, (10/3)(1/n1 +1/n2 +1/n3) and 2/(2r+1). This increment
at time 2 is a little larger than the Breslow jump of 10/d1. The �rst term of the variance will
have an increment of [exp((X†β)(]2(10/3)(1/n21 + 1/n22 + 1/n23) at time 2. The increment to the
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Entry

a

b

c

Figure 1: A simple 4 state model.

cumulative distance from the center d will be

[X† − 11r

11r + 5
]

10

3n1

+ [X† − (2/3)7r + 4r

n2
](10/3)(1/n2)

+ [X† − (1/3)7r + 4r

n2
](10/3)(1/n3)

For X† = 1 and β = π/3 we get cumulative hazard and variance below. We have r ≡ eπ/3,
V=

6 Multi-state data

Figure 1 shows a simple multi-state model, while table 4 shows a data set for the model. Subject
1 follows the path of Entry, a, b, a, with no further follow up after the �nal transition, while
subjects 4 and 5 are 'censored'; they have further follow-up after the last observed change of
state.

(This section not yet �nished.)
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id time1 time2 event x
1 0 4 a 0
1 4 9 b 0
1 9 10 a 0
2 0 5 b 1
3 2 9 c 1
4 0 2 a 0
4 2 8 c 0
4 8 9 0
5 1 3 b 2
5 3 11 2

Table 4: A multi-state data set.
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