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Abstract

Outliers have more than two centuries’ history in the field of statistics.

Recently, they have become a focal topic because of their relevance to terror-

ism, network intrusions, financial fraud, and other areas where rare events

are critical to understanding a process. This paper presents a new algorithm,

called hdoutliers, for detecting multidimensional outliers. It is unique

for a) dealing with a mixture of categorical and continuous variables, b)

dealing with the curse of dimensionality (many columns of data), c) deal-

ing with many rows of data, d) dealing with outliers that mask other out-

liers, and e) dealing consistently with unidimensional and multidimensional

datasets. Unlike ad hoc methods found in many machine learning papers,

hdoutliers is based on a distributional model that allows outliers to be

tagged with a probability.
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1 Introduction

According to Hawkins [28], “An outlier is an observation which deviates so much

from the other observations as to arouse suspicions that it was generated by a

different mechanism”. The modern history of outlier detection began with con-

cerns over combining astronomical observations [56, 4]. The prevailing concern

among many scientists from the earliest times was over how much outliers could

bias estimates of location and spread. Statistically-based rules for outlier rejection

emerged as early as the late 18th century.

There are two predominant reasons for analysts’ longstanding interest in out-

liers. The first is to identify cases that can bias estimates of statistical models.

The second is to locate extreme cases in a distribution because such values may

be especially (or solely) interesting. The first reason is not a good approach to

the estimation problem. Outliers should not be eliminated from model fits unless

a clear reason for their occurrence is available. Furthermore, there are numerous

robust versions of classical models that automatically downweight outliers with-

out introducing substantial bias [25]. The second reason overlooks the possibility

of inliers [29]. These are unusual cases found in the middle of mixtures of distri-

butions.

This paper is concerned with the interplay of visual methods and outlier de-

tection methods. It is not an attempt to survey the vast field of outlier detection or

to cover the full range of currently available methods. For general introductions,

see the references at the beginning of the Related Work section below.

The contributions in this paper are:

• We demonstrate why the classical definition of an outlier (a large distance

of a point from a central location estimate (mean, median, etc.) is unneces-

sarily restrictive and often involves a circularity.

• We introduce a new algorithm, called hdoutliers, for multidimensional

outliers on n rows by p columns of data that addresses the curse of di-

mensionality (large p), scalability (large n), categorical variables, and non-

normal distributions. This algorithm is designed to be paired with visual-

ization methods that can help an analyst explore unusual features in data.

• We demonstrate why visual analytic tools cannot be used to detect multidi-

mensional outliers.

• We introduce some novel applications of outlier detection and accompany-

ing visualizations based on hdoutliers.
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2 Related Work

There are several excellent books on outliers written by statisticians [4, 28, 52, 57].

Statisticians have also written survey papers [24, 34, 2]. Computer scientists have

written books and papers on this topic as well [1, 11, 31]. The latter include

surveys of the statistical sources.

2.1 Univariate Outliers

The detection of outliers in the observed distribution of a single variable spans

the entire history of outlier detection. It spans this history not only because it is

apparently the oldest formulation of the problem, but also is the focus of relatively

recent research on outliers.

2.1.1 The Distance from the Center Rule

The word outlier implies lying at an extreme end of a set of ordered values – far

away from the center of those values. The modern history of outlier detection

emerged with methods that depend on a measure of centrality and a measure of

distance from that measure of centrality. As early as the 1860’s, Chauvenet (cited

in [4]) judged an observation to be an outlier if it lies outside the lower or upper

1/(4n) points of the Normal distribution. Barnett and Lewis [4] document many

other early rules that depend on the Normal distribution but fail to distinguish

between population and sample variance.

Grubbs [23], in contrast, based his rule on the sample moments of the Normal:

G =

max
1≤i≤n

|xi − x̄|

s

where x̄ and s are the sample mean and standard deviation, respectively.

Grubbs referenced G against the t distribution in order to spot an upper or

lower outlier:

G >
n−1√

n

√

√

√

√

t2
α/(2n),n−2

n−2+ t2
α/(2n),n−2

If one knows that the values on a variable are sampled randomly from a Nor-

mal distribution and if the estimates of location and scale are unbiased and if one

wishes to detect only the largest absolute outlier, it is a valid test.
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Unfortunately, the usual sample estimates of the mean and standard deviation

are not robust against outliers. So we have a circularity problem. We assume a

null distribution (say, the Normal), estimate its parameters, and then use those es-

timates to test whether a point could have plausibly come from that distribution.

But if our alternative hypothesis is that it doesn’t (the usual case), then the out-

lier should not be included in the estimation. Barnett and Lewis [4] discuss this

problem in more detail, where they distinguish inclusive and exclusive methods.

They, as well as [52], also discuss robust estimation methods for overcoming this

circularity problem.

Barnett and Lewis discuss other detection methods for non-Normal distribu-

tions. The same principals apply in these cases, namely, that the sample is ran-

dom, the population distributions are known and that the parameter estimates are

unbiased.

2.1.2 The Box Plot Rule

A box-plot graphically depicts a batch of data using a few summary statistics

called letter values [58, 19]. The letter values in Tukey’s original definition are

the median and the hinges (medians of the upper and lower halves of the data).

The hinge values correspond closely, but not necessarily, to the lower quartile (Q1)

and the upper quartile (Q3). Tukey called the difference between the hinges the

Hspread, which corresponds closely to the quantity Q3–Q1, or the Inter Quartile

Range (IQR). In Tukey’s version of the box-plot (see the upper panel of Fig-

ure 1), a box is drawn to span the Hspread. The median is marked inside the box.

Whiskers extend from the edges of the box to the farthest upper and lower data

points (Adjacent values) inside the so-called inner fences. The upper inner fence

is the

upperhinge+1.5×Hspread

and the lower inner fence is the

lowerhinge−1.5×Hspread

Any data point beyond the Adjacent values is plotted as an outlying point. 1

1Few statistics packages produce box plots according to Tukey’s definition [19]. Surprisingly,

the boxplot function in the core R package does not, despite its ancestry inside Tukey’s group at

Bell Laboratories.
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Tukey designed the box plot (he called it a schematic plot) to be drawn by

hand on a small batch of numbers. The whiskers were designed not to enable

outlier detection, but to locate the display on the interval that supports the bulk of

the values. Consequently, he chose the Hspread to correspond roughly to three

standard deviations on normally distributed data. This choice led to two conse-

quences: 1) it doesn’t apply to skewed distributions, which constitute the instance

many advocates think is the best reason for using a box plot in the first place, and

2) it doesn’t include sample size in its derivation, which means that the box plot

will falsely flag outliers on larger samples. As Dawson [14] shows, “regardless of

size, at least 30% of samples drawn from a normally-distributed population will

have one or more data flagged as outliers.” The top panel of Figure 1 illustrates

this problem for a sample of 100,000 Normally distributed numbers. Thousands

of points are denoted as outliers in the display.

To deal with the skewness problem, Hubert and Vandervieren [33] and others

have suggested modifying the fences rule by using a robust estimate of skewness.

By contrast, Tukey’s approach for this problem involved transforming the data

through his ladder of powers [58] before drawing the box plot.

The Letter-Value-Box-Plot [32] was designed to deal with the second problem.

The authors compute additional letter values (splitting the splits) until a statistical

measure of fit is satisfied. Each letter-value region is represented by a rectan-

gle. The lower panel of Figure 1 shows the result. On the same 100,000 Normal

variables, only two points are identified as outliers.

Figure 1: Outliers revealed in a box plot [58] and letter values box plot [32]. These

plots are based on 100,000 values sampled from a Gaussian (Standard Normal)

distribution. By definition, the data contain no probable outliers, yet the ordinary

box plot shows thousands of outliers. This example illustrates why ordinary box

plots cannot be used to discover probable outliers.
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2.1.3 The Gaps Rule

Suppose that we do not know the population distribution and suppose, further,

that our idea of outliers is that they do not belong to the generating distribution

we suspect underlies our data. Figure 2 shows two dotplots of batches of data that

have the same mean and standard deviation. Absent knowledge of the parametric

distribution, we cannot apply the usual outlier detection algorithms. Furthermore,

we are more inclined to say the the largest point in the right dot plot is an outlier,

whereas the largest point in the left plot, having the same score, is not.

A simple example emphasizes this point. Suppose we give a test to 100 stu-

dents and find the mean score is 50 and the standard deviation is 5. Among these

students, we find one perfect score of 100. The next lower score is 65. We might

be inclined to suspect the student with a score of 100 is a genius or a cheat. And if

there were three students with perfect scores in this overall distribution, we might

suspect cheating even more. On the other hand, if the perfect score is at the top of

a chain of scores spaced not more than 5 points apart, we might be less suspicious.

Classical outlier tests would not discriminate among these possibilities.

These considerations and others led to a different criterion for discovering

outliers. Namely, we should look for gaps (spacings) between the ordered values

rather than extremities. A consequence of this point of view is that we can identify

unusual scores in the middle of distributions as well as in the extremes, as long as

they are separated from other scores by a large gap.

Dixon [15] headed in this direction by developing an outlier test based on the

gap between the largest point and the second largest point, standardized by the

range of scores. His test was originally based on a normal distribution, but in

subsequent publications, he developed nonparametric variations. Dixon tabulated

percentage points for a range of Q statistics.

Q =
xn − xn−1

xn − x1

Tukey [58] considered the more general question of identifying gaps anywhere

in a batch of scores. Wainer and Schacht [60] adapted Tukey’s gapping idea for

a version of the test that weighted extreme values more than middle ones. They

derived an approximate z score that could be used to test the significance of gaps.

Burridge and Taylor [9] developed an outlier test based on the extreme-value

distribution of gaps between points sampled from the Exponential family of dis-

tributions:
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Figure 2: Dot plots of small batches of data with comparable means and standard

deviations.

f (xi;θi,φ) = exp

[

xθ −a(θ)

b(φ)
+ c(x,φ)

]

where x is a scalar or vector, θ is a scalar or vector of parameters, φ is a scale

parameter, and a(.),b(.),c(.) are functions. This family of mathematical distribu-

tions is quite large (including the Normal, Exponential, Gamma, Beta, Bernoulli,

Poisson, and many others).

2.2 Multivariate Outliers

2.2.1 Mahalanobis Distance

The squared Mahalanobis distance (D2) of a multidimensional point x from the

centroid of a multivariate Normal distribution described by covariance matrix Σ

and centroid µ is

D2 = (x−µ)′Σ−1(x−µ)

Figure 3 shows how this works in two dimensions. The left panel shows a bivariate

normal distribution with level curves inscribed at different densities. The right

panel shows the same level curves as horizontal slices through this mountain.

Each is an ellipse. Distance to the centroid of the ellipses is measured differently

for different directions. The weights are determined by the covariance matrix Σ.

If Σ is an identity matrix, then D2 is equivalent to squared Euclidean distance.

The squared distance in the above formula is a chi-square variate (a member

of the Gamma distribution family). This means that, if the assumption of Nor-

mality is met, D2 can be tested against a chi-square distribution with p degrees of

freedom. As with univariate outlier tests based on a Normality assumption, this

test is valid if the assumption of multivariate Normality is met. Unfortunately,
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Figure 3: Mahalanobis Distance. The left panel shows a bivariate Normal distri-

bution. The right shows level curves for that distribution. Each curve corresponds

to a value of D2.

this is seldom true for real data and, furthermore, estimates of the covariance ma-

trix and centroid are far from robust. Consequently, this outlier test has limited

applicability.

Rousseeuw and Van Zomeren [51] introduce a robust Mahalanobis Distance

estimator that can be used to overcome some of these problems. Ram Gnanade-

sikan [21] discusses applications of Gamma probability plots to these multivariate

problems. They can be interpreted similarly to the way univariate probability plots

are interpreted.

2.2.2 Multivariate Gap Tests

Multivariate data do not have a simple ordering for computing gaps between ad-

jacent points. There have been several attempts at getting around this problem.

Rohlf [49] proposed using the edge lengths of the geometric minimum span-

ning tree (MST) as a single distribution measure. Assuming these edges follow

a gamma distribution, one could construct a gamma probability plot on them or

examine the upper tail for judgments on outliers. There are problems with this

method, however, when variates are correlated [10]. Similar methods based on

the MST have been proposed [44, 48], but they suffer from the same problem.

2.2.3 Clustering

A popular multivariate outlier detection method has been to cluster the data and

then look for any points that are far from their nearest cluster centroids [66, 35,
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47, 36]. This method works reasonably well for moderate-size datasets with a few

singleton outliers. Most clustering algorithms do not scale well to larger datasets,

however.

A related approach, called Local Outlier Factor (LOF) [8], is similar to density-

based clustering. Like DBSCAN clustering [17], it is highly sensitive to the choice

of input parameter values.

Most clustering methods are not based on a probability model (see [18] for an

exception) so they are susceptible to false negatives and false positives. We will

show one remedy in Section 3.3.2.

3 A New Multivariate Outlier Algorithm

The new algorithm hdoutliers is designed to meet several criteria at once:

• It allows us to identify outliers in a mixture of categorical and continuous

variables.

• It deals with the curse of dimensionality by exploiting random projections

for large p (number of dimensions).

• It deals with large n (number of points) by exploiting a one-pass algorithm

to compress the data.

• It deals with the problem of masking [4], in which clusters of outlying points

can elude detection by traditional methods.

• It works for both single-dimensional and multi-dimensional data.

3.1 The Algorithm

1. If there are any categorical variables in the dataset, convert each categorical

variable to a continuous variable by using Correspondence Analysis [22].

2. If there are more than 10,000 columns, use random projections to reduce

the number of columns to p = 4logn/(ε2/2− ε3/3), where ε is the error

bound on squared distances.

3. Normalize the columns of the resulting n by p matrix X .

4. Let row(i) be the ith row of X .
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5. Let radius = .1/(logn)1/p.

6. Initialize exemplars, a list of exemplars with initial entry [row(1)].

7. Initialize members, a list of lists with initial entry [1]; each exemplar will

eventually have its own list of affiliated member indices.

8. Now do one pass through X :

forall the row(i), i = 1, . . . ,n do
d = distance to closest exemplar, found in exemplars( j)
if d < radius then

add i to members( j)list
else

add row(i) to exemplars

add new list to members, initialized with [i]
end

end

9. Now compute nearest-neighbor distances between all pairs of exemplars in

the exemplars list.

10. Fit an Exponential distribution to the upper tail of the nearest-neighbor dis-

tances and compute the upper 1−α point of the fitted cumulative distribu-

tion function (CDF).

11. For any exemplar that is significantly far from all the other exemplars based

on this cutpoint, flag all entries of members corresponding to exemplar as

outliers.

3.2 Comments on the Algorithm

1. Correspondence Analysis (CA) begins by representing a categorical vari-

able with a set of dummy codes, one code (1 or 0) for each category. These

codes comprise a matrix of 1’s and 0’s with as many columns as there are

categories on that variable. We then compute a principal components de-

composition of the covariance matrix of the dummy codes. This analysis is

done separately for each of k categorical variables in a dataset. CA scores
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on the rows are computed on each categorical variable by multiplying the

dummy codes on that row’s variable times the eigenvectors of the decom-

position for that variable. 2

2. The Johnson-Lindenstrauss lemma [37] states that if a metric on X results

from an embedding of X into a Euclidean space, then X can be embedded in

Rp with distortion less than 1+ ε , where p ∼ O(ε2 logn). Remarkably, this

embedding is achieved by projecting onto a p-dimensional subspace using

random Gaussian coefficients. Because our algorithm depends only on a

similarity transformation of Euclidean distances, we can logarithmically re-

duce the complexity of the problem through random projections and avoid

the curse of dimensionality. The number of projected columns based on the

formula in this step was based on ε = .2 for the analyses in this paper. The

value 10,000 is the lower limit for the formula’s effectiveness in reducing

the number of dimensions when ε = .2.

3. X is now bounded by the unit (hyper) cube.

4. A row represents a p-dimensional vector in a finite vector space.

5. The value of radius is designed to be well below the expected value of the

distances between n(n− 1)/2 pairs of points distributed randomly in a p

dimensional space.

6. The exemplars list contains a list of row values representing clusters of

points.

7. The members list of lists contains one list of indices for each exemplar that

point to rows represented by that exemplar.

8. The Leader algorithm [27] in this step creates clusters in one pass through

the data. It is equivalent to centering balls in p dimensional space on points

considered to be exemplars. Unlike k-means clustering, the Leader algo-

rithm centers clusters on actual data points rather than on centroids and it

involves only one pass through the data. In rare instances, the resulting clus-

ters can be dependent on the order of the data, but not enough to affect the

identification of outliers because of the large number of clusters produced.

We are characterizing a high-dimensional density by covering it with many

small balls.
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9. The number of clusters resulting from radius applied even to large numbers

of data points is small enough to allow the simple brute-force algorithm for

finding nearest neighbors.

10. We use a modification of the Burridge and Taylor [9] algorithm due to

Schwarz [55]. For all examples in this paper, α (the critical value) was

set to .05.

11. Flagging all members of an outlying cluster means that this algorithm can

identify outlying sets of points as well as outlying singletons.

3.3 Validation

We validate hdoutliers by examining its performance with regard to 1) false

positives and 2) false negatives. If the claims for the algorithm are true, then we

should expect it 1) to find outliers in random data not more than 100α percent

of the time and 2) not to miss outliers when they are truly due to mixtures of

distributions or anomalous instances.

3.3.1 False Positives

• Table 1 contains results of a simulation using random distributions. The

entries are based on 1,000 runs of hdoutliers on normally distributed vari-

ables with α (the critical value) set to .05. The entries show that hdoutliers

is generally conservative.

• The results were similar for random Exponential and Uniform variables.

3.3.2 False Negatives

• Figure 4 is based on the dataset in Figure 2. The hdoutliers identifies the

outlier in the right dot plot but finds none in the left.

• Figure 5 shows that hdoutliers correctly identifies the inlier in the center

of both one-dimensional and two-dimensional configurations.

2Computing the decomposition separately for each categorical variable is equivalent to doing

an MCA separately for each variable instead of pooling all the categorical variable dummy codes

into one matrix.
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Table 1: Empirical level of hdoutliers test based on null model with Gaussian

variables and critical value α = .05.

p=1 p=5 p=10 p=100

n=100 .011 .040 .018 .012

n=500 .015 .035 .027 .020

n=1000 .017 .045 .027 .024

• Figure 6 is based on the dfki dataset in [20]. The left panel shows what

the authors consider to be outliers. The right panel shows the result of

implementing hdoutliers inside a k-means clustering. On each iteration

of the k-means algorithm, we apply hdoutliers to the points assigned to

each cluster in order to determine if any points belonging to their nearest

cluster should be treated as outliers. The outliers are then left out of the

computation of the cluster centroids.

• Table 2 shows that hdoutliers correctly identifies the outlier in a table

defined by two categorical variables. The data consist of two columns of

strings, one for {A,B,C,W} and one for {A,B,C,X}. There is only one row

with the tuple 〈W,X〉. The hdoutliers also handles mixtures of categorical

and continuous variables.

-5 -3 -1 1 3 5

Z

-5 -3 -1 1 3 5

W

Figure 4: The hdoutliers algorithm applied to data shown in Figure2.

Table 2: Crosstab with an outlier (red entry)

A B C X

A 100 0 0 0

B 0 100 0 0

C 0 0 100 0

W 0 0 0 1
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Figure 5: Inlier datasets; hdoutliers correctly identifies the inliers.
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Figure 6: Test dataset from [20]. The left plot shows what the authors consider

to be outliers and the right plot is the result produced by hdoutliers inside a

k-means clustering. The outliers are colored red in both plots.

4 Visualization

This section covers various probability-based methods for visualizing outliers.

The main point in all these examples is that a statistical algorithm based on prob-

ability theory is necessary for reliably discovering outliers but visualizations are

necessary for interpreting the results of these discoveries.

4.1 Visualizing Unidimensional Outliers

For univariate outlier detection, histograms, probability plots [12], and dot plots

[61] are most useful. Figure 7 shows a dot plot and normal probability plot of

residuals from a two-factor experiment. In these probability plots, we look for

major distortions from a straight line. A probability plot can be constructed from

any parametric distribution for which a cumulative distribution function can be
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computed. They are widely used in experimental design and analysis of residuals.

Even though these univariate displays can be helpful in exploratory analysis

to detect outliers, they do not yield the kind of risk estimate that hdoutliers or

the parametric methods described in the Related Work sections provide. Without

a risk estimate, the chance of false discoveries is uncontrolled. In practical terms,

we might see terrorists in groups where none exist. Thus, as in Figure 7, it is

helpful to highlight outliers using a statistical method like hdoutliers. This

approach will also help with false negatives, where significant outliers may not be

visually salient.
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Figure 7: Dot plot and normal probability plot of residuals from a two-factor

experiment. One lower outlier is evident.

4.2 Low-dimensional visualizations cannot be used to discover

multivariate outliers

There have been many outlier identification proposals based on looking at axis-

parallel views or low-dimensional projections (usually 2D) that are presumed to

reveal high-dimensional outliers (e.g., [39, 30, 38, 42]). This approach is infea-

sible. Figure 8 shows why. The data are samples from a multivariate Normal

distribution. The left panel plot illustrates the problem for two dimensions. The

figure incorporates a 95 percent joint confidence ellipse based on the sample dis-

tribution of points. Two points are outside this ellipse. The red point on the left is

at the extreme of both marginal histograms. But the one on the right is well inside

both histograms. Examining the separate histograms would fail to identify that

point.

The right panel plot shows the situation for three dimensions. The three

marginal 2D plots are shown as projections onto the facets of the 3D cube. Each

17



confidence ellipse is based on the pairwise plots. The red outlying point in the

joint distribution is inside all three marginal ellipses. The 2D scatterplots fail to

reveal the 3D outlier. The situation gets even worse in higher dimensions.

Some authors have proposed methods for finding low-dimensional views based

on projection pursuit or ad hoc projections (e.g., [7, 53]). This approach is rela-

tively ineffective for visualizing outliers in higher-dimensional datasets because

many projections are required to discriminate outliers. Furthermore, most outlier-

seeking projection methods are impractical on large datasets.

Parallel coordinates, another 2D display, have been advocated for the purpose

of outlier detection [46]. Figure 9 shows why this is infeasible.

Figure 8: 2D (left) and 3D (right) joint outliers. The figures show why lower-

dimensional projections cannot be used to discern outliers.

4.3 Using statistical algorithms to highlight outliers in visual-

izations

While visualizations cannot be used to detect multidimensional outliers, they are

invaluable for inspecting and understanding outliers detected by statistical meth-

ods. This section covers a variety of visualizations that lend themselves to outlier

description.

4.3.1 Parallel Coordinates

As mentioned in the last section, parallel coordinates cannot be used to discover

outliers. Figure 9 shows parallel coordinates on four variables from the Adult

dataset in the UCI dataset repository [41]. The algorithm discovered two outliers
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out of 32,561 cases. The profiles appear to run through the middle of the densi-

ties even though they are multivariate outliers. Although parallel coordinates are

generally useless for discovering outliers, they can be useful for inspecting outlier

profiles detected by a statistical algorithm.

Figure 9: Parallel coordinates plot of five variables from the Adult dataset in the

UCI data repository. The red profiles are multivariate outliers.

4.3.2 Regression Residuals

The conventional statistical wisdom for dealing with outliers in a regression con-

text is to examine residuals using a variety of diagnostic graphics and statistics

[3, 5, 13]. Following this advice is critical before promoting any particular regres-

sion model on a dataset. It is a necessary but not sufficient strategy, however. The

reason is that some outliers have a high influence on the regression and can pull

the estimates so close to them that they are masked.

Figure 10, derived from an example in [52], shows how this can happen in even

the simplest bivariate regression. The data are measurements of light intensity and

temperature of a sample of stars. In the left panel, the ordinary least squares (OLS)

regression line is pulled down by the four outliers in the lower right corner, leaving

a bad fit to the bulk of the points. We would detect most, but not all, of the outliers

in a residual plot. The right pane, based on a least median of squares regression

(LMS) [50], shows six red points as regression outliers. They are, in fact, dwarf

stars.
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There are numerous robust regression models, but LMS has the lowest break-

down point against outliers [16]. Therefore, the most prudent approach to regres-

sion modeling is to compute the fit both ways and see if the regression coefficients

and residual plots differ substantially. If they do, then LMS should be the choice.

Otherwise, the simpler OLS model is preferable.
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Figure 10: Ordinary Least Squares (OLS) regression (left panel) and Least Median

of Squares (LMS) regression (right panel) on attributes of stars. Data are from [52]

.

4.3.3 Time Series Outliers

Detecting time series outliers requires some pre-processing. In particular, we need

to fit a time series model and then examine residuals. Fitting parametric models

like ARIMA [6] can be useful for this purpose, but appropriate model identifica-

tion can be complicated. A simpler approach is to fit a nonparametric smoother.

The example in Figure 11 was fit by a kernel smoother with a biweight function on

the running mean. The data are measurements of snowfall at a Greenland weather

station, used in [62]. The outliers (red dots) are presumably due to malfunctions

in the recording equipment.

Computing outlying series for multiple time series is straightforward with the

hdoutliers algorithm. We simply treat each series as a row in the data matrix.

For n series on p time points, we have a p-dimensional outlier problem. Figure 12

shows series for 20 years of the Bureau of Labor Statistics Unemployment data.

The red series clearly indicate the consequences of the Great Recession. This

example illustrates why a probability-based outlier method is so important. We

could rank the series by their average levels of unemployment or use one of the

other ad-hoc multidimensional outlier detectors, but we would have no way of

knowing how many at the top are significant outliers.
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Figure 11: Outlying measurements of snow cover at a Greenland weather station.
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Figure 12: US unemployment series outliers. The shock and ensuing recovery

from the Great Recession is clearly indicated in the outliers.

4.3.4 Ipsative Outliers

An ipsative outlier is a case that is an outlier with respect to itself. That is, we

standardize values within each case (row) and then look for outliers in each stan-

dardized profile. Any profile with an outlier identified by hdoutliers is consid-

ered noteworthy; in other words, we can characterize a person simply by referring

to his outliers. It is easiest to understand this concept by examining a graphic.

Figure 13 shows an outlying profile for a baseball player who is hit by pitches

more frequently than we would expect from looking at his other characteristics.

This player may not be hit by pitches significantly more than other players, how-

ever. We are instead interested in a player with a highly unusual profile that can
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be described simply by his outlier(s). In every other respect, the player is not nec-

essarily noteworthy. This method should not be used, of course, unless there are

enough features to merit computing the statistical outlier model on a case.
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Figure 13: One baseball player’s profile showing an outlier (hit by pitch) that

deviates significantly from his other features.

4.3.5 Text Outliers

An important application for multivariate outlier detection involves document

analysis. Given a collection of documents (Twitter messages, Wikipedia pages,

emails, news pages, etc.), one might want to discover any document that is an

outlier with respect to the others. The simplest approach to this problem is to

use a bag-of-words model. We collect all the words in the documents, stem them

to resolve variants, remove stopwords and punctuation, and then apply the tf-idf

measure [54] on the words within each document. The resulting vectors for each

document are then submitted to hdoutliers.

Figure 14 shows the results for an analysis of 21 novels from the Guttenberg

Web site [26]. This problem requires the use of random projections. Before pro-

jection, there are 21,021 columns (tf-idf measures) in the dataset. After projection

there are 653. Not surprisingly, Ulysses stands out as an outlier. Distinctively, it

contains numerous neologisms.
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Tristram Shandy was identified by hdoutliers as the second largest, but not

significant, outlier. It too contains numerous neologisms. These two novels lie

outside most of the points in Figure 14. Not all multivariate outliers will fall on

the periphery of 2D projections, however, as we showed in Section 4.2.

Figure 14: Document outliers. Nonmetric multidimensional scaling on matrix of

Spearman correlations computed on tfidf scores. The stress for this solution is

.163 and one document (Ulysses) is flagged as an outlier by hdoutliers.

4.4 Graph Outliers

There are several possibilities related to finding outliers in graphs. One popular

application is the discovery of outliers among nodes of a network graph. The best

way to exploit hdoutliers in this context is to featurize the nodes. Common

candidates are Prominence, Transitivity (Watts-Strogatz Clustering Coefficient),

Closeness Centrality, Betweenness Centrality, Node Degree, Average Degree of

Neighbors, and Page Rank [45]. Figure 15 shows an example for the Les Miser-

ables dataset [40]. The nodes were featurized for Betweenness Centrality in order

to discover any extraordinarily influential characters. Not surprisingly, Valjean is

connected to significantly more characters than anyone else in the book.

23



Figure 15: Les Miserables characters network graph. Valjean is identified as out-

lying on Betweenness Centrality.

An alternative application involves discovering outlying graphs in a collec-

tion of graphs. For this problem, we need to find a way to characterize a graph

and to derive a distance measure that can be fed to hdoutliers. This appli-

cation depends on assuming the collection of graphs is derived from a common

population model and that any outliers involve a contamination from some alter-

native model. We need a measure of the distance between two graphs to do this.

Unfortunately, graph matching and related graph edit distance calculations have

impractical complexities. Approximate distances are easier to calculate, however

[59]. The approach we take is as follows:

First, we compute the adjacency matrix for each graph. We then convert the

adjacencies above the diagonal to a single binary string. When doing that, how-

ever, we have to reorder the adjacency matrix to a canonical form; otherwise,

arbitrary input orderings could affect distance calculations on the string. A sim-

ple way to do this is to compute the eigendecomposition of the related Laplacian

matrix and permute the adjacencies according to the ordering of the values of the

eigenvector corresponding to the smallest nonzero eigenvalue. After permuting

and encoding the adjacency matrices into strings, we compute the Levenshtein

distances [43] between pairs of strings. Finally, we assemble the nearest-neighbor

distances from the resulting distance matrix and subject them to the hdoutliers

algorithm.

Figure 16 shows an example of this approach using the Karate Club graph

[65]. We generated 15 random minimum spanning tree graphs having the same
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number of nodes as the Karate Club graph. Then we applied the above procedure

to identify outliers. The Karate Club graph was strongly flagged as an outlier by

the algorithm.

Figure 16: Karate Club graph (red) is an outlier with respect to comparably scaled

random minimum spanning tree graphs.

4.4.1 Scagnostics Outliers

Scagnostics [63] can be used to identify outlying scatterplots. Because the calcu-

lations are relatively efficient, these measures can be computed on many thousands

of plots in practical time. This outlier application is multivariate, because there

are nine scagnostics for each scatterplot, so a multivariate detection algorithm like

hdoutliers is required.

Figure 17 shows two outlying scatterplots identified by hdoutliers when ap-

plied to a dataset of baseball player characteristics featured in [64]. While the

left plot in the figure is clearly unusual, the surprising result is to see an evidently

bivariate Normal scatterplot of Weight against Height in the right plot. Although

the dataset includes many physical and performance features of real baseball play-

ers, the type of Normal bivariate distribution found in many introductory statistics

books is an outlier among the 120 scatterplots considered in this example. This re-

sult should motivate authors writing tutorials on data analysis to include examples

beyond Normal distributions.
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Figure 17: Scatterplot outliers based on Scagnostics computed on 120 scatterplots

of baseball player features.

4.4.2 Geographic Outliers

We can compute spatial outliers using the hdoutliers algorithm. More fre-

quently, however, maps are a convenient way to display the results of outlier

detection on other variables. Figure 18 shows an example of outlier detection

on marriage and divorce rates by US state. Nevada is clearly an outlier. Despite

the simplicity of this example, analyses at the State level are usually too coarse

to be useful. Outliers displayed at a higher resolution (e.g., counties) are often

preferable.
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Figure 18: Marriage and Divorce rates in the US. There is one state that is an

outlier.
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5 Conclusions

There is a huge assortment of papers on outlier detection in the machine learning

community; only a fraction is cited here. While many of these approaches are

ingenious, few rest on a statistical foundation that takes risk into account. If we

label something as an outlier, we had better be able to quantify or control our risk.

Outliers are anomalies. An anomaly is not a thing; literally, anomaly means

lack of a law. It is a judgment based on evidence. Sometimes evidence is a

collection of facts. Sometimes it is a collection of indications that cause us to

modify our prior belief that what we are observing is not unusual.

The statistical detection of outliers is concerned with the latter case. Lacking

certainty of the process that generated what we think might be an outlier, we

must derive a judgment that an observation is inconsistent with our belief in that

process.

Many statistical outlier detection algorithms assume a generating process de-

rives from a parametric distribution. The more interesting cases are when we

cannot presume such a distribution. The most useful cases, ones that are more

relevant to real applications, involve the broadest class of prior beliefs in possible

generating processes.

In order to be consistent in our behavior, we need to assign a probability to

the strength of our belief that we are looking at an outlier. Methods that do not

do this, that simply rank discrepancies or flag observations above an arbitrary

threshold (like most of the algorithms in the Related Work section), can lead to

inconsistent results.

The hdoutliers algorithm reduces the risk of making a false outlier dis-

covery for a broad class of prior beliefs. Even for unusual applications such as

the graph outlier problem, this algorithm provides a foundation for framing the

judgment concerning an outlier. And importantly for the applications in this pa-

per, hdoutliers is designed specifically to guide, protect, and deepen our visual

analysis of data.

References

[1] C. Aggarwal. Outlier Analysis. Springer Verlag, 2013.

[2] F. Anscombe. Rejection of outliers. Technometrics, 2:123–147, 1960.

27



[3] A. Atkinson. Plots, Transformations and Regression: An Introduction to

Graphical Methods of Diagnostic Regression Analysis. Oxford University

Press, 1985.

[4] V. Barnett and T. Lewis. Outliers in Statistical Data. John Wiley & Sons,

1994.

[5] D. A. Belsley, E. Kuh, and R. E. Welsch. Regression Diagnostics: Iden-

tifying Influential Data and Sources of Collinearity. John Wiley & Sons,

1980.

[6] G. E. P. Box and G. M. Jenkins. Time Series Analysis: Forecasting and

Control (rev. ed.). Holden-Day, Oakland, CA, 1976.

[7] M. Breaban and H. Luchian. Outlier detection with nonlinear projection

pursuit. International Journal of Computers Communications & Control,

8(1):30–36, 2013.

[8] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. LOF: Identifying

density-based local outliers. In Proceedings of the 2000 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’00, pages 93–

104, New York, NY, USA, 2000. ACM.

[9] P. Burridge and A. Taylor. Additive outlier detection via extreme-value the-

ory. Journal of Time Series Analysis, 27:685–701, 2006.

[10] C. Caroni and P. Prescott. On Rohlf’s method for the detection of outliers in

multivariate data. Journal of Multivariate Analysis, 52:295–307, 1995.

[11] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey.

ACM Comput. Surveys, 41:15:1–15:58, July 2009.

[12] W. S. Cleveland. The Elements of Graphing Data. Hobart Press, Summit,

NJ, 1985.

[13] R. D. Cook and S. Weisberg. Residuals and Influence in Regression. Chap-

man & Hall, London, 1982.

[14] R. Dawson. How significant is a boxplot outlier? Journal of Statistics

Education, 19, 2011.

28



[15] W. Dixon. Ratios involving extreme values. Annals of Mathematical Statis-

tics, 22:68–78, 1951.

[16] D. Donoho and P. Huber. The notion of breakdown point. In P. Bickel,

K. Doksum, and J. Hodges, editors, A Festschrift for Erich L. Lehman, pages

157–184. Wadsworth, Belmont, CA, 1983.

[17] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for

discovering clusters in large spatial databases with noise. In E. Simoudis,

J. Han, and U. M. Fayyad, editors, Second International Conference on

Knowledge Discovery and Data Mining, pages 226–231. AAAI Press, 1996.

[18] C. Fraley and A. Raftery. Model-based clustering, discriminant analysis, and

density estimation. Journal of the American Statistical Association, 97:611–

631, 2002.

[19] M. Frigge, D. Hoaglin, and B. Iglewicz. Some implementations of the box-

plot. The American Statistician, 43:50–54, 1989.

[20] German Research Center for Artificial Intelligence (DFKI). dataset:

dfki-artificial-3000-unsupervised-ad.csv. http://madm.dfki.de/

downloads. Accessed: 2016-02-08.

[21] R. Gnanadesikan. Methods for statistical data analysis of multivariate ob-

servations. John Wiley & Sons, New York, 1977.

[22] M. Greenacre. Theory and Applications of Correspondence Analysis. Aca-

demic Press, 1984.

[23] F. Grubbs. Sample criteria for testing outlying observations. The Annals of

Mathematical Statistics, 21:27–58, 1950.

[24] A. Hadi and J. Simonoff. Procedures for the identification of multiple

outliers in linear models. Journal of the American Statistical Association,

88:1264–1272, 1993.

[25] F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel. Robust

Statistics: The Approach Based on Influence Functions. John Wiley & Sons,

2005.

[26] M. Hart. Project Gutenberg. https://www.gutenberg.org.

29



[27] J. Hartigan. Clustering Algorithms. John Wiley & Sons, New York, 1975.

[28] D. Hawkins. Identification of Outliers. Chapman & Hall/CRC, 1980.

[29] R. Hayden. A dataset that is 44% outliers. Journal of Statistics Education,

13, 2005.

[30] A. Hinneburg, D. Keim, and M. Wawryniuk. HD-Eye: Visual mining

of high-dimensional data. IEEE Computer Graphics and Applications,

19(5):22–31, Sept. 1999.

[31] V. Hodge. Outlier and Anomaly Detection: A Survey of Outlier and Anomaly

Detection Methods. LAP LAMBERT Academic Publishing, 2011.

[32] H. Hofmann, K. Kafadar, and H. Wickham. Letter-value plots: Boxplots for

large data. Technical report, had.co.nz, 2011.

[33] M. Hubert and E. Vandervieren. An adjusted boxplot for skewed distribu-

tions. Computational Statistics & Data Analysis, 52:5186–5201, 2008.

[34] I. Iglewicz and D. Hoaglin. How to detect and handle outliers. In

E. Mykytka, editor, The ASQC Basic References in Quality Control: Sta-

tistical Techniques. ASQC, 1993.

[35] M. Jiang, S. Tseng, and C. Su. Two-phase clustering process for outliers

detection. Pattern Recognition Letters, 22:691–700, 2001.

[36] J. Jobe and M. Pokojovy. A cluster-based outlier detection scheme for mul-

tivariate data. Journal of the American Statistical Association, 110:1543–

1551, 2015.

[37] W. B. Johnson and J. Lindenstrauss. Lipschitz mapping into Hilbert space.

Contemporary Mathematics, 26:189–206, 1984.

[38] E. Kandogan. Visualizing multi-dimensional clusters, trends, and outliers

using star coordinates. In Proceedings of the Seventh ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining, KDD ’01,

pages 107–116, New York, NY, USA, 2001. ACM.

[39] E. Kandogan. Just-in-time annotation of clusters, outliers, and trends in

point-based data visualizations. In Proceedings of the 2012 IEEE Confer-

ence on Visual Analytics Science and Technology (VAST), VAST ’12, pages

73–82, Washington, DC, USA, 2012. IEEE Computer Society.

30



[40] D. Knuth. The Stanford GraphBase: A Platform for combinatorial comput-

ing. Addison-Wesley, Reading, MA, 1993.

[41] R. Kohavi and B. Becker. Adult data set. http://archive.ics.uci.

edu/ml/datasets/Adult, 1996.
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